3034 lines
111 KiB
C++
3034 lines
111 KiB
C++
//========= Copyright Valve Corporation, All rights reserved. ============//
|
|
//
|
|
// Purpose:
|
|
//
|
|
// $NoKeywords: $
|
|
//
|
|
//=============================================================================//
|
|
// XZip.cpp Version 1.1
|
|
//
|
|
// Authors: Mark Adler et al. (see below)
|
|
//
|
|
// Modified by: Lucian Wischik
|
|
// lu@wischik.com
|
|
//
|
|
// Version 1.0 - Turned C files into just a single CPP file
|
|
// - Made them compile cleanly as C++ files
|
|
// - Gave them simpler APIs
|
|
// - Added the ability to zip/unzip directly in memory without
|
|
// any intermediate files
|
|
//
|
|
// Modified by: Hans Dietrich
|
|
// hdietrich2@hotmail.com
|
|
//
|
|
// Version 1.1: - Added Unicode support to CreateZip() and ZipAdd()
|
|
// - Changed file names to avoid conflicts with Lucian's files
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Lucian Wischik's comments:
|
|
// --------------------------
|
|
// THIS FILE is almost entirely based upon code by Info-ZIP.
|
|
// It has been modified by Lucian Wischik.
|
|
// The original code may be found at http://www.info-zip.org
|
|
// The original copyright text follows.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Original authors' comments:
|
|
// ---------------------------
|
|
// This is version 2002-Feb-16 of the Info-ZIP copyright and license. The
|
|
// definitive version of this document should be available at
|
|
// ftp://ftp.info-zip.org/pub/infozip/license.html indefinitely.
|
|
//
|
|
// Copyright (c) 1990-2002 Info-ZIP. All rights reserved.
|
|
//
|
|
// For the purposes of this copyright and license, "Info-ZIP" is defined as
|
|
// the following set of individuals:
|
|
//
|
|
// Mark Adler, John Bush, Karl Davis, Harald Denker, Jean-Michel Dubois,
|
|
// Jean-loup Gailly, Hunter Goatley, Ian Gorman, Chris Herborth, Dirk Haase,
|
|
// Greg Hartwig, Robert Heath, Jonathan Hudson, Paul Kienitz,
|
|
// David Kirschbaum, Johnny Lee, Onno van der Linden, Igor Mandrichenko,
|
|
// Steve P. Miller, Sergio Monesi, Keith Owens, George Petrov, Greg Roelofs,
|
|
// Kai Uwe Rommel, Steve Salisbury, Dave Smith, Christian Spieler,
|
|
// Antoine Verheijen, Paul von Behren, Rich Wales, Mike White
|
|
//
|
|
// This software is provided "as is", without warranty of any kind, express
|
|
// or implied. In no event shall Info-ZIP or its contributors be held liable
|
|
// for any direct, indirect, incidental, special or consequential damages
|
|
// arising out of the use of or inability to use this software.
|
|
//
|
|
// Permission is granted to anyone to use this software for any purpose,
|
|
// including commercial applications, and to alter it and redistribute it
|
|
// freely, subject to the following restrictions:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice,
|
|
// definition, disclaimer, and this list of conditions.
|
|
//
|
|
// 2. Redistributions in binary form (compiled executables) must reproduce
|
|
// the above copyright notice, definition, disclaimer, and this list of
|
|
// conditions in documentation and/or other materials provided with the
|
|
// distribution. The sole exception to this condition is redistribution
|
|
// of a standard UnZipSFX binary as part of a self-extracting archive;
|
|
// that is permitted without inclusion of this license, as long as the
|
|
// normal UnZipSFX banner has not been removed from the binary or disabled.
|
|
//
|
|
// 3. Altered versions--including, but not limited to, ports to new
|
|
// operating systems, existing ports with new graphical interfaces, and
|
|
// dynamic, shared, or static library versions--must be plainly marked
|
|
// as such and must not be misrepresented as being the original source.
|
|
// Such altered versions also must not be misrepresented as being
|
|
// Info-ZIP releases--including, but not limited to, labeling of the
|
|
// altered versions with the names "Info-ZIP" (or any variation thereof,
|
|
// including, but not limited to, different capitalizations),
|
|
// "Pocket UnZip", "WiZ" or "MacZip" without the explicit permission of
|
|
// Info-ZIP. Such altered versions are further prohibited from
|
|
// misrepresentative use of the Zip-Bugs or Info-ZIP e-mail addresses or
|
|
// of the Info-ZIP URL(s).
|
|
//
|
|
// 4. Info-ZIP retains the right to use the names "Info-ZIP", "Zip", "UnZip",
|
|
// "UnZipSFX", "WiZ", "Pocket UnZip", "Pocket Zip", and "MacZip" for its
|
|
// own source and binary releases.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
#if defined( WIN32) && !defined( _X360 )
|
|
#define STRICT
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#include <windows.h>
|
|
#elif !defined(_X360)
|
|
#define far
|
|
#define near
|
|
#define INVALID_HANDLE_VALUE (void*)-1
|
|
#define _tzset tzset
|
|
#endif
|
|
|
|
#if defined( _X360 )
|
|
#include "xbox/xbox_win32stubs.h"
|
|
#endif
|
|
|
|
#include <time.h>
|
|
#include "zip/XZip.h"
|
|
|
|
#ifdef __clang__
|
|
// These clang 3.1 warnings don't seem very useful, and cannot easily be
|
|
// avoided in this file.
|
|
#pragma GCC diagnostic ignored "-Wdangling-else" // warning: add explicit braces to avoid dangling else [-Wdangling-else]
|
|
#endif
|
|
|
|
#ifdef OSX
|
|
#define MAP_ANONYMOUS MAP_ANON
|
|
#endif
|
|
|
|
#ifdef XZIP_NOT_THREAD_SAFE
|
|
static ZRESULT lasterrorZ=ZR_OK;
|
|
#else
|
|
#include "tier0/threadtools.h"
|
|
static CTHREADLOCALINTEGER(ZRESULT) lasterrorZ;
|
|
#endif
|
|
|
|
typedef unsigned char uch; // unsigned 8-bit value
|
|
typedef unsigned short ush; // unsigned 16-bit value
|
|
typedef unsigned long ulg; // unsigned 32-bit value
|
|
typedef size_t extent; // file size
|
|
typedef unsigned Pos; // must be at least 32 bits
|
|
typedef unsigned IPos; // A Pos is an index in the character window. Pos is used only for parameter passing
|
|
|
|
#ifndef EOF
|
|
#define EOF (-1)
|
|
#endif
|
|
|
|
|
|
// Error return values. The values 0..4 and 12..18 follow the conventions
|
|
// of PKZIP. The values 4..10 are all assigned to "insufficient memory"
|
|
// by PKZIP, so the codes 5..10 are used here for other purposes.
|
|
#define ZE_MISS -1 // used by procname(), zipbare()
|
|
#define ZE_OK 0 // success
|
|
#define ZE_EOF 2 // unexpected end of zip file
|
|
#define ZE_FORM 3 // zip file structure error
|
|
#define ZE_MEM 4 // out of memory
|
|
#define ZE_LOGIC 5 // internal logic error
|
|
#define ZE_BIG 6 // entry too large to split
|
|
#define ZE_NOTE 7 // invalid comment format
|
|
#define ZE_TEST 8 // zip test (-T) failed or out of memory
|
|
#define ZE_ABORT 9 // user interrupt or termination
|
|
#define ZE_TEMP 10 // error using a temp file
|
|
#define ZE_READ 11 // read or seek error
|
|
#define ZE_NONE 12 // nothing to do
|
|
#define ZE_NAME 13 // missing or empty zip file
|
|
#define ZE_WRITE 14 // error writing to a file
|
|
#define ZE_CREAT 15 // couldn't open to write
|
|
#define ZE_PARMS 16 // bad command line
|
|
#define ZE_OPEN 18 // could not open a specified file to read
|
|
#define ZE_MAXERR 18 // the highest error number
|
|
|
|
|
|
// internal file attribute
|
|
#define UNKNOWN (-1)
|
|
#define BINARY 0
|
|
#define ASCII 1
|
|
|
|
#define BEST -1 // Use best method (deflation or store)
|
|
#define STORE 0 // Store method
|
|
#define DEFLATE 8 // Deflation method
|
|
|
|
#define CRCVAL_INITIAL 0L
|
|
|
|
// MSDOS file or directory attributes
|
|
#define MSDOS_HIDDEN_ATTR 0x02
|
|
#define MSDOS_DIR_ATTR 0x10
|
|
|
|
// Lengths of headers after signatures in bytes
|
|
#define LOCHEAD 26
|
|
#define CENHEAD 42
|
|
#define ENDHEAD 18
|
|
|
|
// Definitions for extra field handling:
|
|
#define EB_HEADSIZE 4 /* length of a extra field block header */
|
|
#define EB_LEN 2 /* offset of data length field in header */
|
|
#define EB_UT_MINLEN 1 /* minimal UT field contains Flags byte */
|
|
#define EB_UT_FLAGS 0 /* byte offset of Flags field */
|
|
#define EB_UT_TIME1 1 /* byte offset of 1st time value */
|
|
#define EB_UT_FL_MTIME (1 << 0) /* mtime present */
|
|
#define EB_UT_FL_ATIME (1 << 1) /* atime present */
|
|
#define EB_UT_FL_CTIME (1 << 2) /* ctime present */
|
|
#define EB_UT_LEN(n) (EB_UT_MINLEN + 4 * (n))
|
|
#define EB_L_UT_SIZE (EB_HEADSIZE + EB_UT_LEN(3))
|
|
#define EB_C_UT_SIZE (EB_HEADSIZE + EB_UT_LEN(1))
|
|
|
|
|
|
// Macros for writing machine integers to little-endian format
|
|
#define PUTSH(a,f) {char _putsh_c=(char)((a)&0xff); wfunc(param,&_putsh_c,1); _putsh_c=(char)((a)>>8); wfunc(param,&_putsh_c,1);}
|
|
#define PUTLG(a,f) {PUTSH((a) & 0xffff,(f)) PUTSH((a) >> 16,(f))}
|
|
|
|
|
|
// -- Structure of a ZIP file --
|
|
// Signatures for zip file information headers
|
|
#define LOCSIG 0x04034b50L
|
|
#define CENSIG 0x02014b50L
|
|
#define ENDSIG 0x06054b50L
|
|
#define EXTLOCSIG 0x08074b50L
|
|
|
|
|
|
#define MIN_MATCH 3
|
|
#define MAX_MATCH 258
|
|
// The minimum and maximum match lengths
|
|
|
|
|
|
#define WSIZE (0x8000)
|
|
// Maximum window size = 32K. If you are really short of memory, compile
|
|
// with a smaller WSIZE but this reduces the compression ratio for files
|
|
// of size > WSIZE. WSIZE must be a power of two in the current implementation.
|
|
//
|
|
|
|
#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
|
|
// Minimum amount of lookahead, except at the end of the input file.
|
|
// See deflate.c for comments about the MIN_MATCH+1.
|
|
//
|
|
|
|
#define MAX_DIST (WSIZE-MIN_LOOKAHEAD)
|
|
// In order to simplify the code, particularly on 16 bit machines, match
|
|
// distances are limited to MAX_DIST instead of WSIZE.
|
|
//
|
|
|
|
|
|
|
|
|
|
|
|
// ===========================================================================
|
|
// Constants
|
|
//
|
|
|
|
#define MAX_BITS 15
|
|
// All codes must not exceed MAX_BITS bits
|
|
|
|
#define MAX_BL_BITS 7
|
|
// Bit length codes must not exceed MAX_BL_BITS bits
|
|
|
|
#define LENGTH_CODES 29
|
|
// number of length codes, not counting the special END_BLOCK code
|
|
|
|
#define LITERALS 256
|
|
// number of literal bytes 0..255
|
|
|
|
#define END_BLOCK 256
|
|
// end of block literal code
|
|
|
|
#define L_CODES (LITERALS+1+LENGTH_CODES)
|
|
// number of Literal or Length codes, including the END_BLOCK code
|
|
|
|
#define D_CODES 30
|
|
// number of distance codes
|
|
|
|
#define BL_CODES 19
|
|
// number of codes used to transfer the bit lengths
|
|
|
|
|
|
#define STORED_BLOCK 0
|
|
#define STATIC_TREES 1
|
|
#define DYN_TREES 2
|
|
// The three kinds of block type
|
|
|
|
#define LIT_BUFSIZE 0x8000
|
|
#define DIST_BUFSIZE LIT_BUFSIZE
|
|
// Sizes of match buffers for literals/lengths and distances. There are
|
|
// 4 reasons for limiting LIT_BUFSIZE to 64K:
|
|
// - frequencies can be kept in 16 bit counters
|
|
// - if compression is not successful for the first block, all input data is
|
|
// still in the window so we can still emit a stored block even when input
|
|
// comes from standard input. (This can also be done for all blocks if
|
|
// LIT_BUFSIZE is not greater than 32K.)
|
|
// - if compression is not successful for a file smaller than 64K, we can
|
|
// even emit a stored file instead of a stored block (saving 5 bytes).
|
|
// - creating new Huffman trees less frequently may not provide fast
|
|
// adaptation to changes in the input data statistics. (Take for
|
|
// example a binary file with poorly compressible code followed by
|
|
// a highly compressible string table.) Smaller buffer sizes give
|
|
// fast adaptation but have of course the overhead of transmitting trees
|
|
// more frequently.
|
|
// - I can't count above 4
|
|
// The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
|
|
// memory at the expense of compression). Some optimizations would be possible
|
|
// if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
|
|
//
|
|
|
|
#define REP_3_6 16
|
|
// repeat previous bit length 3-6 times (2 bits of repeat count)
|
|
|
|
#define REPZ_3_10 17
|
|
// repeat a zero length 3-10 times (3 bits of repeat count)
|
|
|
|
#define REPZ_11_138 18
|
|
// repeat a zero length 11-138 times (7 bits of repeat count)
|
|
|
|
#define HEAP_SIZE (2*L_CODES+1)
|
|
// maximum heap size
|
|
|
|
|
|
// ===========================================================================
|
|
// Local data used by the "bit string" routines.
|
|
//
|
|
|
|
#define Buf_size (8 * 2*sizeof(char))
|
|
// Number of bits used within bi_buf. (bi_buf may be implemented on
|
|
// more than 16 bits on some systems.)
|
|
|
|
// Output a 16 bit value to the bit stream, lower (oldest) byte first
|
|
#define PUTSHORT(state,w) \
|
|
{ if (state.bs.out_offset >= state.bs.out_size-1) \
|
|
state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); \
|
|
/* flush may fail, so only write into the buffer if there's actually room (same below) */ \
|
|
if (state.bs.out_offset < state.bs.out_size-1) { \
|
|
state.bs.out_buf[state.bs.out_offset++] = (char) ((w) & 0xff); \
|
|
state.bs.out_buf[state.bs.out_offset++] = (char) ((ush)(w) >> 8); \
|
|
} \
|
|
}
|
|
|
|
#define PUTBYTE(state,b) \
|
|
{ if (state.bs.out_offset >= state.bs.out_size) \
|
|
state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); \
|
|
if (state.bs.out_offset < state.bs.out_size) \
|
|
state.bs.out_buf[state.bs.out_offset++] = (char) (b); \
|
|
}
|
|
|
|
// DEFLATE.CPP HEADER
|
|
|
|
#define HASH_BITS 15
|
|
// For portability to 16 bit machines, do not use values above 15.
|
|
|
|
#define HASH_SIZE (unsigned)(1<<HASH_BITS)
|
|
#define HASH_MASK (HASH_SIZE-1)
|
|
#define WMASK (WSIZE-1)
|
|
// HASH_SIZE and WSIZE must be powers of two
|
|
|
|
#define NIL 0
|
|
// Tail of hash chains
|
|
|
|
#define FAST 4
|
|
#define SLOW 2
|
|
// speed options for the general purpose bit flag
|
|
|
|
#define TOO_FAR 4096
|
|
// Matches of length 3 are discarded if their distance exceeds TOO_FAR
|
|
|
|
|
|
|
|
#define EQUAL 0
|
|
// result of memcmp for equal strings
|
|
|
|
|
|
// ===========================================================================
|
|
// Local data used by the "longest match" routines.
|
|
|
|
#define H_SHIFT ((HASH_BITS+MIN_MATCH-1)/MIN_MATCH)
|
|
// Number of bits by which ins_h and del_h must be shifted at each
|
|
// input step. It must be such that after MIN_MATCH steps, the oldest
|
|
// byte no longer takes part in the hash key, that is:
|
|
// H_SHIFT * MIN_MATCH >= HASH_BITS
|
|
|
|
#define max_insert_length max_lazy_match
|
|
// Insert new strings in the hash table only if the match length
|
|
// is not greater than this length. This saves time but degrades compression.
|
|
// max_insert_length is used only for compression levels <= 3.
|
|
|
|
|
|
|
|
const int extra_lbits[LENGTH_CODES] // extra bits for each length code
|
|
= {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
|
|
|
|
const int extra_dbits[D_CODES] // extra bits for each distance code
|
|
= {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
|
|
|
|
const int extra_blbits[BL_CODES]// extra bits for each bit length code
|
|
= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
|
|
|
|
const uch bl_order[BL_CODES] = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
|
|
// The lengths of the bit length codes are sent in order of decreasing
|
|
// probability, to avoid transmitting the lengths for unused bit length codes.
|
|
|
|
|
|
typedef struct config {
|
|
ush good_length; // reduce lazy search above this match length
|
|
ush max_lazy; // do not perform lazy search above this match length
|
|
ush nice_length; // quit search above this match length
|
|
ush max_chain;
|
|
} config;
|
|
|
|
// Values for max_lazy_match, good_match, nice_match and max_chain_length,
|
|
// depending on the desired pack level (0..9). The values given below have
|
|
// been tuned to exclude worst case performance for pathological files.
|
|
// Better values may be found for specific files.
|
|
//
|
|
|
|
const config configuration_table[10] = {
|
|
// good lazy nice chain
|
|
{0, 0, 0, 0}, // 0 store only
|
|
{4, 4, 8, 4}, // 1 maximum speed, no lazy matches
|
|
{4, 5, 16, 8}, // 2
|
|
{4, 6, 32, 32}, // 3
|
|
{4, 4, 16, 16}, // 4 lazy matches */
|
|
{8, 16, 32, 32}, // 5
|
|
{8, 16, 128, 128}, // 6
|
|
{8, 32, 128, 256}, // 7
|
|
{32, 128, 258, 1024}, // 8
|
|
{32, 258, 258, 4096}};// 9 maximum compression */
|
|
|
|
// Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
|
|
// For deflate_fast() (levels <= 3) good is ignored and lazy has a different meaning.
|
|
|
|
|
|
|
|
|
|
|
|
// Data structure describing a single value and its code string.
|
|
typedef struct ct_data {
|
|
union {
|
|
ush freq; // frequency count
|
|
ush code; // bit string
|
|
} fc;
|
|
union {
|
|
ush dad; // father node in Huffman tree
|
|
ush len; // length of bit string
|
|
} dl;
|
|
} ct_data;
|
|
|
|
typedef struct tree_desc {
|
|
ct_data *dyn_tree; // the dynamic tree
|
|
ct_data *static_tree; // corresponding static tree or NULL
|
|
const int *extra_bits; // extra bits for each code or NULL
|
|
int extra_base; // base index for extra_bits
|
|
int elems; // max number of elements in the tree
|
|
int max_length; // max bit length for the codes
|
|
int max_code; // largest code with non zero frequency
|
|
} tree_desc;
|
|
|
|
|
|
|
|
|
|
class TTreeState
|
|
{ public:
|
|
TTreeState();
|
|
|
|
ct_data dyn_ltree[HEAP_SIZE]; // literal and length tree
|
|
ct_data dyn_dtree[2*D_CODES+1]; // distance tree
|
|
ct_data static_ltree[L_CODES+2]; // the static literal tree...
|
|
// ... Since the bit lengths are imposed, there is no need for the L_CODES
|
|
// extra codes used during heap construction. However the codes 286 and 287
|
|
// are needed to build a canonical tree (see ct_init below).
|
|
ct_data static_dtree[D_CODES]; // the static distance tree...
|
|
// ... (Actually a trivial tree since all codes use 5 bits.)
|
|
ct_data bl_tree[2*BL_CODES+1]; // Huffman tree for the bit lengths
|
|
|
|
tree_desc l_desc;
|
|
tree_desc d_desc;
|
|
tree_desc bl_desc;
|
|
|
|
ush bl_count[MAX_BITS+1]; // number of codes at each bit length for an optimal tree
|
|
|
|
int heap[2*L_CODES+1]; // heap used to build the Huffman trees
|
|
int heap_len; // number of elements in the heap
|
|
int heap_max; // element of largest frequency
|
|
// The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
|
|
// The same heap array is used to build all trees.
|
|
|
|
uch depth[2*L_CODES+1];
|
|
// Depth of each subtree used as tie breaker for trees of equal frequency
|
|
|
|
uch length_code[MAX_MATCH-MIN_MATCH+1];
|
|
// length code for each normalized match length (0 == MIN_MATCH)
|
|
|
|
uch dist_code[512];
|
|
// distance codes. The first 256 values correspond to the distances
|
|
// 3 .. 258, the last 256 values correspond to the top 8 bits of
|
|
// the 15 bit distances.
|
|
|
|
int base_length[LENGTH_CODES];
|
|
// First normalized length for each code (0 = MIN_MATCH)
|
|
|
|
int base_dist[D_CODES];
|
|
// First normalized distance for each code (0 = distance of 1)
|
|
|
|
uch far l_buf[LIT_BUFSIZE]; // buffer for literals/lengths
|
|
ush far d_buf[DIST_BUFSIZE]; // buffer for distances
|
|
|
|
uch flag_buf[(LIT_BUFSIZE/8)];
|
|
// flag_buf is a bit array distinguishing literals from lengths in
|
|
// l_buf, and thus indicating the presence or absence of a distance.
|
|
|
|
unsigned last_lit; // running index in l_buf
|
|
unsigned last_dist; // running index in d_buf
|
|
unsigned last_flags; // running index in flag_buf
|
|
uch flags; // current flags not yet saved in flag_buf
|
|
uch flag_bit; // current bit used in flags
|
|
// bits are filled in flags starting at bit 0 (least significant).
|
|
// Note: these flags are overkill in the current code since we don't
|
|
// take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
|
|
|
|
ulg opt_len; // bit length of current block with optimal trees
|
|
ulg static_len; // bit length of current block with static trees
|
|
|
|
ulg cmpr_bytelen; // total byte length of compressed file
|
|
ulg cmpr_len_bits; // number of bits past 'cmpr_bytelen'
|
|
|
|
ulg input_len; // total byte length of input file
|
|
// input_len is for debugging only since we can get it by other means.
|
|
|
|
ush *file_type; // pointer to UNKNOWN, BINARY or ASCII
|
|
// int *file_method; // pointer to DEFLATE or STORE
|
|
};
|
|
|
|
TTreeState::TTreeState()
|
|
{ tree_desc a = {dyn_ltree, static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS, 0}; l_desc = a;
|
|
tree_desc b = {dyn_dtree, static_dtree, extra_dbits, 0, D_CODES, MAX_BITS, 0}; d_desc = b;
|
|
tree_desc c = {bl_tree, NULL, extra_blbits, 0, BL_CODES, MAX_BL_BITS, 0}; bl_desc = c;
|
|
last_lit=0;
|
|
last_dist=0;
|
|
last_flags=0;
|
|
}
|
|
|
|
|
|
|
|
class TBitState
|
|
{ public:
|
|
|
|
int flush_flg;
|
|
//
|
|
unsigned bi_buf;
|
|
// Output buffer. bits are inserted starting at the bottom (least significant
|
|
// bits). The width of bi_buf must be at least 16 bits.
|
|
int bi_valid;
|
|
// Number of valid bits in bi_buf. All bits above the last valid bit
|
|
// are always zero.
|
|
char *out_buf;
|
|
// Current output buffer.
|
|
unsigned out_offset;
|
|
// Current offset in output buffer.
|
|
// On 16 bit machines, the buffer is limited to 64K.
|
|
unsigned out_size;
|
|
// Size of current output buffer
|
|
ulg bits_sent; // bit length of the compressed data only needed for debugging???
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TDeflateState
|
|
{ public:
|
|
TDeflateState() {window_size=0;}
|
|
|
|
uch window[2L*WSIZE];
|
|
// Sliding window. Input bytes are read into the second half of the window,
|
|
// and move to the first half later to keep a dictionary of at least WSIZE
|
|
// bytes. With this organization, matches are limited to a distance of
|
|
// WSIZE-MAX_MATCH bytes, but this ensures that IO is always
|
|
// performed with a length multiple of the block size. Also, it limits
|
|
// the window size to 64K, which is quite useful on MSDOS.
|
|
// To do: limit the window size to WSIZE+CBSZ if SMALL_MEM (the code would
|
|
// be less efficient since the data would have to be copied WSIZE/CBSZ times)
|
|
Pos prev[WSIZE];
|
|
// Link to older string with same hash index. To limit the size of this
|
|
// array to 64K, this link is maintained only for the last 32K strings.
|
|
// An index in this array is thus a window index modulo 32K.
|
|
Pos head[HASH_SIZE];
|
|
// Heads of the hash chains or NIL. If your compiler thinks that
|
|
// HASH_SIZE is a dynamic value, recompile with -DDYN_ALLOC.
|
|
|
|
ulg window_size;
|
|
// window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
|
|
// input file length plus MIN_LOOKAHEAD.
|
|
|
|
long block_start;
|
|
// window position at the beginning of the current output block. Gets
|
|
// negative when the window is moved backwards.
|
|
|
|
int sliding;
|
|
// Set to false when the input file is already in memory
|
|
|
|
unsigned ins_h; // hash index of string to be inserted
|
|
|
|
unsigned int prev_length;
|
|
// Length of the best match at previous step. Matches not greater than this
|
|
// are discarded. This is used in the lazy match evaluation.
|
|
|
|
unsigned strstart; // start of string to insert
|
|
unsigned match_start; // start of matching string
|
|
int eofile; // flag set at end of input file
|
|
unsigned lookahead; // number of valid bytes ahead in window
|
|
|
|
unsigned max_chain_length;
|
|
// To speed up deflation, hash chains are never searched beyond this length.
|
|
// A higher limit improves compression ratio but degrades the speed.
|
|
|
|
unsigned int max_lazy_match;
|
|
// Attempt to find a better match only when the current match is strictly
|
|
// smaller than this value. This mechanism is used only for compression
|
|
// levels >= 4.
|
|
|
|
unsigned good_match;
|
|
// Use a faster search when the previous match is longer than this
|
|
|
|
int nice_match; // Stop searching when current match exceeds this
|
|
};
|
|
|
|
|
|
typedef struct iztimes {
|
|
time_t atime,mtime,ctime;
|
|
} iztimes; // access, modify, create times
|
|
|
|
typedef struct zlist {
|
|
ush vem, ver, flg, how; // See central header in zipfile.c for what vem..off are
|
|
ulg tim, crc, siz, len;
|
|
extent nam, ext, cext, com; // offset of ext must be >= LOCHEAD
|
|
ush dsk, att, lflg; // offset of lflg must be >= LOCHEAD
|
|
ulg atx, off;
|
|
char name[MAX_PATH]; // File name in zip file
|
|
char *extra; // Extra field (set only if ext != 0)
|
|
char *cextra; // Extra in central (set only if cext != 0)
|
|
char *comment; // Comment (set only if com != 0)
|
|
char iname[MAX_PATH]; // Internal file name after cleanup
|
|
char zname[MAX_PATH]; // External version of internal name
|
|
int mark; // Marker for files to operate on
|
|
int trash; // Marker for files to delete
|
|
int dosflag; // Set to force MSDOS file attributes
|
|
struct zlist far *nxt; // Pointer to next header in list
|
|
} TZipFileInfo;
|
|
|
|
|
|
class TState;
|
|
typedef unsigned (*READFUNC)(TState &state, char *buf,unsigned size);
|
|
typedef unsigned (*FLUSHFUNC)(void *param, const char *buf, unsigned *size);
|
|
typedef unsigned (*WRITEFUNC)(void *param, const char *buf, unsigned size);
|
|
class TState
|
|
{ public: TState() {err=0;}
|
|
//
|
|
void *param;
|
|
int level; bool seekable;
|
|
READFUNC readfunc; FLUSHFUNC flush_outbuf;
|
|
TTreeState ts; TBitState bs; TDeflateState ds;
|
|
const char *err;
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#undef Assert
|
|
void Assert(TState &state,bool cond, const char *msg)
|
|
{ if (cond) return;
|
|
state.err=msg;
|
|
}
|
|
void __cdecl Trace(const char *x, ...) {va_list paramList; va_start(paramList, x); paramList; va_end(paramList);}
|
|
void __cdecl Tracec(bool ,const char *x, ...) {va_list paramList; va_start(paramList, x); paramList; va_end(paramList);}
|
|
|
|
|
|
|
|
// ===========================================================================
|
|
// Local (static) routines in this file.
|
|
//
|
|
|
|
void init_block (TState &);
|
|
void pqdownheap (TState &,ct_data *tree, int k);
|
|
void gen_bitlen (TState &,tree_desc *desc);
|
|
void gen_codes (TState &state,ct_data *tree, int max_code);
|
|
void build_tree (TState &,tree_desc *desc);
|
|
void scan_tree (TState &,ct_data *tree, int max_code);
|
|
void send_tree (TState &state,ct_data *tree, int max_code);
|
|
int build_bl_tree (TState &);
|
|
void send_all_trees (TState &state,int lcodes, int dcodes, int blcodes);
|
|
void compress_block (TState &state,ct_data *ltree, ct_data *dtree);
|
|
void set_file_type (TState &);
|
|
void send_bits (TState &state, int value, int length);
|
|
unsigned bi_reverse (unsigned code, int len);
|
|
void bi_windup (TState &state);
|
|
void copy_block (TState &state,char *buf, unsigned len, int header);
|
|
|
|
|
|
#define send_code(state, c, tree) send_bits(state, tree[c].fc.code, tree[c].dl.len)
|
|
// Send a code of the given tree. c and tree must not have side effects
|
|
|
|
// alternatively...
|
|
//#define send_code(state, c, tree)
|
|
// { if (state.verbose>1) fprintf(stderr,"\ncd %3d ",(c));
|
|
// send_bits(state, tree[c].fc.code, tree[c].dl.len); }
|
|
|
|
#define d_code(dist) ((dist) < 256 ? state.ts.dist_code[dist] : state.ts.dist_code[256+((dist)>>7)])
|
|
// Mapping from a distance to a distance code. dist is the distance - 1 and
|
|
// must not have side effects. dist_code[256] and dist_code[257] are never used.
|
|
|
|
#define Max(a,b) (a >= b ? a : b)
|
|
/* the arguments must not have side effects */
|
|
|
|
/* ===========================================================================
|
|
* Allocate the match buffer, initialize the various tables and save the
|
|
* location of the internal file attribute (ascii/binary) and method
|
|
* (DEFLATE/STORE).
|
|
*/
|
|
void ct_init(TState &state, ush *attr)
|
|
{
|
|
int n; /* iterates over tree elements */
|
|
int bits; /* bit counter */
|
|
int length; /* length value */
|
|
int code; /* code value */
|
|
int dist; /* distance index */
|
|
|
|
state.ts.file_type = attr;
|
|
//state.ts.file_method = method;
|
|
state.ts.cmpr_bytelen = state.ts.cmpr_len_bits = 0L;
|
|
state.ts.input_len = 0L;
|
|
|
|
if (state.ts.static_dtree[0].dl.len != 0) return; /* ct_init already called */
|
|
|
|
/* Initialize the mapping length (0..255) -> length code (0..28) */
|
|
length = 0;
|
|
for (code = 0; code < LENGTH_CODES-1; code++) {
|
|
state.ts.base_length[code] = length;
|
|
for (n = 0; n < (1<<extra_lbits[code]); n++) {
|
|
state.ts.length_code[length++] = (uch)code;
|
|
}
|
|
}
|
|
Assert(state,length == 256, "ct_init: length != 256");
|
|
/* Note that the length 255 (match length 258) can be represented
|
|
* in two different ways: code 284 + 5 bits or code 285, so we
|
|
* overwrite length_code[255] to use the best encoding:
|
|
*/
|
|
state.ts.length_code[length-1] = (uch)code;
|
|
|
|
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
|
|
dist = 0;
|
|
for (code = 0 ; code < 16; code++) {
|
|
state.ts.base_dist[code] = dist;
|
|
for (n = 0; n < (1<<extra_dbits[code]); n++) {
|
|
state.ts.dist_code[dist++] = (uch)code;
|
|
}
|
|
}
|
|
Assert(state,dist == 256, "ct_init: dist != 256");
|
|
dist >>= 7; /* from now on, all distances are divided by 128 */
|
|
for ( ; code < D_CODES; code++) {
|
|
state.ts.base_dist[code] = dist << 7;
|
|
for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
|
|
state.ts.dist_code[256 + dist++] = (uch)code;
|
|
}
|
|
}
|
|
Assert(state,dist == 256, "ct_init: 256+dist != 512");
|
|
|
|
/* Construct the codes of the static literal tree */
|
|
for (bits = 0; bits <= MAX_BITS; bits++) state.ts.bl_count[bits] = 0;
|
|
n = 0;
|
|
while (n <= 143) state.ts.static_ltree[n++].dl.len = 8, state.ts.bl_count[8]++;
|
|
while (n <= 255) state.ts.static_ltree[n++].dl.len = 9, state.ts.bl_count[9]++;
|
|
while (n <= 279) state.ts.static_ltree[n++].dl.len = 7, state.ts.bl_count[7]++;
|
|
while (n <= 287) state.ts.static_ltree[n++].dl.len = 8, state.ts.bl_count[8]++;
|
|
/* fc.codes 286 and 287 do not exist, but we must include them in the
|
|
* tree construction to get a canonical Huffman tree (longest code
|
|
* all ones)
|
|
*/
|
|
gen_codes(state,(ct_data *)state.ts.static_ltree, L_CODES+1);
|
|
|
|
/* The static distance tree is trivial: */
|
|
for (n = 0; n < D_CODES; n++) {
|
|
state.ts.static_dtree[n].dl.len = 5;
|
|
state.ts.static_dtree[n].fc.code = (ush)bi_reverse(n, 5);
|
|
}
|
|
|
|
/* Initialize the first block of the first file: */
|
|
init_block(state);
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Initialize a new block.
|
|
*/
|
|
void init_block(TState &state)
|
|
{
|
|
int n; /* iterates over tree elements */
|
|
|
|
/* Initialize the trees. */
|
|
for (n = 0; n < L_CODES; n++) state.ts.dyn_ltree[n].fc.freq = 0;
|
|
for (n = 0; n < D_CODES; n++) state.ts.dyn_dtree[n].fc.freq = 0;
|
|
for (n = 0; n < BL_CODES; n++) state.ts.bl_tree[n].fc.freq = 0;
|
|
|
|
state.ts.dyn_ltree[END_BLOCK].fc.freq = 1;
|
|
state.ts.opt_len = state.ts.static_len = 0L;
|
|
state.ts.last_lit = state.ts.last_dist = state.ts.last_flags = 0;
|
|
state.ts.flags = 0; state.ts.flag_bit = 1;
|
|
}
|
|
|
|
#define SMALLEST 1
|
|
/* Index within the heap array of least frequent node in the Huffman tree */
|
|
|
|
|
|
/* ===========================================================================
|
|
* Remove the smallest element from the heap and recreate the heap with
|
|
* one less element. Updates heap and heap_len.
|
|
*/
|
|
#define pqremove(tree, top) \
|
|
{\
|
|
top = state.ts.heap[SMALLEST]; \
|
|
state.ts.heap[SMALLEST] = state.ts.heap[state.ts.heap_len--]; \
|
|
pqdownheap(state,tree, SMALLEST); \
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Compares to subtrees, using the tree depth as tie breaker when
|
|
* the subtrees have equal frequency. This minimizes the worst case length.
|
|
*/
|
|
#define smaller(tree, n, m) \
|
|
(tree[n].fc.freq < tree[m].fc.freq || \
|
|
(tree[n].fc.freq == tree[m].fc.freq && state.ts.depth[n] <= state.ts.depth[m]))
|
|
|
|
/* ===========================================================================
|
|
* Restore the heap property by moving down the tree starting at node k,
|
|
* exchanging a node with the smallest of its two sons if necessary, stopping
|
|
* when the heap property is re-established (each father smaller than its
|
|
* two sons).
|
|
*/
|
|
void pqdownheap(TState &state,ct_data *tree, int k)
|
|
{
|
|
int v = state.ts.heap[k];
|
|
int j = k << 1; /* left son of k */
|
|
int htemp; /* required because of bug in SASC compiler */
|
|
|
|
while (j <= state.ts.heap_len) {
|
|
/* Set j to the smallest of the two sons: */
|
|
if (j < state.ts.heap_len && smaller(tree, state.ts.heap[j+1], state.ts.heap[j])) j++;
|
|
|
|
/* Exit if v is smaller than both sons */
|
|
htemp = state.ts.heap[j];
|
|
if (smaller(tree, v, htemp)) break;
|
|
|
|
/* Exchange v with the smallest son */
|
|
state.ts.heap[k] = htemp;
|
|
k = j;
|
|
|
|
/* And continue down the tree, setting j to the left son of k */
|
|
j <<= 1;
|
|
}
|
|
state.ts.heap[k] = v;
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Compute the optimal bit lengths for a tree and update the total bit length
|
|
* for the current block.
|
|
* IN assertion: the fields freq and dad are set, heap[heap_max] and
|
|
* above are the tree nodes sorted by increasing frequency.
|
|
* OUT assertions: the field len is set to the optimal bit length, the
|
|
* array bl_count contains the frequencies for each bit length.
|
|
* The length opt_len is updated; static_len is also updated if stree is
|
|
* not null.
|
|
*/
|
|
void gen_bitlen(TState &state,tree_desc *desc)
|
|
{
|
|
ct_data *tree = desc->dyn_tree;
|
|
const int *extra = desc->extra_bits;
|
|
int base = desc->extra_base;
|
|
int max_code = desc->max_code;
|
|
int max_length = desc->max_length;
|
|
ct_data *stree = desc->static_tree;
|
|
int h; /* heap index */
|
|
int n, m; /* iterate over the tree elements */
|
|
int bits; /* bit length */
|
|
int xbits; /* extra bits */
|
|
ush f; /* frequency */
|
|
int overflow = 0; /* number of elements with bit length too large */
|
|
|
|
for (bits = 0; bits <= MAX_BITS; bits++) state.ts.bl_count[bits] = 0;
|
|
|
|
/* In a first pass, compute the optimal bit lengths (which may
|
|
* overflow in the case of the bit length tree).
|
|
*/
|
|
tree[state.ts.heap[state.ts.heap_max]].dl.len = 0; /* root of the heap */
|
|
|
|
for (h = state.ts.heap_max+1; h < HEAP_SIZE; h++) {
|
|
n = state.ts.heap[h];
|
|
bits = tree[tree[n].dl.dad].dl.len + 1;
|
|
if (bits > max_length) bits = max_length, overflow++;
|
|
tree[n].dl.len = (ush)bits;
|
|
/* We overwrite tree[n].dl.dad which is no longer needed */
|
|
|
|
if (n > max_code) continue; /* not a leaf node */
|
|
|
|
state.ts.bl_count[bits]++;
|
|
xbits = 0;
|
|
if (n >= base) xbits = extra[n-base];
|
|
f = tree[n].fc.freq;
|
|
state.ts.opt_len += (ulg)f * (bits + xbits);
|
|
if (stree) state.ts.static_len += (ulg)f * (stree[n].dl.len + xbits);
|
|
}
|
|
if (overflow == 0) return;
|
|
|
|
Trace("\nbit length overflow\n");
|
|
/* This happens for example on obj2 and pic of the Calgary corpus */
|
|
|
|
/* Find the first bit length which could increase: */
|
|
do {
|
|
bits = max_length-1;
|
|
while (state.ts.bl_count[bits] == 0) bits--;
|
|
state.ts.bl_count[bits]--; /* move one leaf down the tree */
|
|
state.ts.bl_count[bits+1] += (ush)2; /* move one overflow item as its brother */
|
|
state.ts.bl_count[max_length]--;
|
|
/* The brother of the overflow item also moves one step up,
|
|
* but this does not affect bl_count[max_length]
|
|
*/
|
|
overflow -= 2;
|
|
} while (overflow > 0);
|
|
|
|
/* Now recompute all bit lengths, scanning in increasing frequency.
|
|
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
|
|
* lengths instead of fixing only the wrong ones. This idea is taken
|
|
* from 'ar' written by Haruhiko Okumura.)
|
|
*/
|
|
for (bits = max_length; bits != 0; bits--) {
|
|
n = state.ts.bl_count[bits];
|
|
while (n != 0) {
|
|
m = state.ts.heap[--h];
|
|
if (m > max_code) continue;
|
|
if (tree[m].dl.len != (ush)bits) {
|
|
Trace("code %d bits %d->%d\n", m, tree[m].dl.len, bits);
|
|
state.ts.opt_len += ((long)bits-(long)tree[m].dl.len)*(long)tree[m].fc.freq;
|
|
tree[m].dl.len = (ush)bits;
|
|
}
|
|
n--;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Generate the codes for a given tree and bit counts (which need not be
|
|
* optimal).
|
|
* IN assertion: the array bl_count contains the bit length statistics for
|
|
* the given tree and the field len is set for all tree elements.
|
|
* OUT assertion: the field code is set for all tree elements of non
|
|
* zero code length.
|
|
*/
|
|
void gen_codes (TState &state, ct_data *tree, int max_code)
|
|
{
|
|
ush next_code[MAX_BITS+1]; /* next code value for each bit length */
|
|
ush code = 0; /* running code value */
|
|
int bits; /* bit index */
|
|
int n; /* code index */
|
|
|
|
/* The distribution counts are first used to generate the code values
|
|
* without bit reversal.
|
|
*/
|
|
for (bits = 1; bits <= MAX_BITS; bits++) {
|
|
next_code[bits] = code = (ush)((code + state.ts.bl_count[bits-1]) << 1);
|
|
}
|
|
/* Check that the bit counts in bl_count are consistent. The last code
|
|
* must be all ones.
|
|
*/
|
|
Assert(state,code + state.ts.bl_count[MAX_BITS]-1 == (1<< ((ush) MAX_BITS)) - 1,
|
|
"inconsistent bit counts");
|
|
Trace("\ngen_codes: max_code %d ", max_code);
|
|
|
|
for (n = 0; n <= max_code; n++) {
|
|
int len = tree[n].dl.len;
|
|
if (len == 0) continue;
|
|
/* Now reverse the bits */
|
|
tree[n].fc.code = (ush)bi_reverse(next_code[len]++, len);
|
|
|
|
//Tracec(tree != state.ts.static_ltree, "\nn %3d %c l %2d c %4x (%x) ", n, (isgraph(n) ? n : ' '), len, tree[n].fc.code, next_code[len]-1);
|
|
}
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Construct one Huffman tree and assigns the code bit strings and lengths.
|
|
* Update the total bit length for the current block.
|
|
* IN assertion: the field freq is set for all tree elements.
|
|
* OUT assertions: the fields len and code are set to the optimal bit length
|
|
* and corresponding code. The length opt_len is updated; static_len is
|
|
* also updated if stree is not null. The field max_code is set.
|
|
*/
|
|
void build_tree(TState &state,tree_desc *desc)
|
|
{
|
|
ct_data *tree = desc->dyn_tree;
|
|
ct_data *stree = desc->static_tree;
|
|
int elems = desc->elems;
|
|
int n, m; /* iterate over heap elements */
|
|
int max_code = -1; /* largest code with non zero frequency */
|
|
int node = elems; /* next internal node of the tree */
|
|
|
|
/* Construct the initial heap, with least frequent element in
|
|
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
|
|
* heap[0] is not used.
|
|
*/
|
|
state.ts.heap_len = 0, state.ts.heap_max = HEAP_SIZE;
|
|
|
|
for (n = 0; n < elems; n++) {
|
|
if (tree[n].fc.freq != 0) {
|
|
state.ts.heap[++state.ts.heap_len] = max_code = n;
|
|
state.ts.depth[n] = 0;
|
|
} else {
|
|
tree[n].dl.len = 0;
|
|
}
|
|
}
|
|
|
|
/* The pkzip format requires that at least one distance code exists,
|
|
* and that at least one bit should be sent even if there is only one
|
|
* possible code. So to avoid special checks later on we force at least
|
|
* two codes of non zero frequency.
|
|
*/
|
|
while (state.ts.heap_len < 2) {
|
|
int newcp = state.ts.heap[++state.ts.heap_len] = (max_code < 2 ? ++max_code : 0);
|
|
tree[newcp].fc.freq = 1;
|
|
state.ts.depth[newcp] = 0;
|
|
state.ts.opt_len--; if (stree) state.ts.static_len -= stree[newcp].dl.len;
|
|
/* new is 0 or 1 so it does not have extra bits */
|
|
}
|
|
desc->max_code = max_code;
|
|
|
|
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
|
|
* establish sub-heaps of increasing lengths:
|
|
*/
|
|
for (n = state.ts.heap_len/2; n >= 1; n--) pqdownheap(state,tree, n);
|
|
|
|
/* Construct the Huffman tree by repeatedly combining the least two
|
|
* frequent nodes.
|
|
*/
|
|
do {
|
|
pqremove(tree, n); /* n = node of least frequency */
|
|
m = state.ts.heap[SMALLEST]; /* m = node of next least frequency */
|
|
|
|
state.ts.heap[--state.ts.heap_max] = n; /* keep the nodes sorted by frequency */
|
|
state.ts.heap[--state.ts.heap_max] = m;
|
|
|
|
/* Create a new node father of n and m */
|
|
tree[node].fc.freq = (ush)(tree[n].fc.freq + tree[m].fc.freq);
|
|
state.ts.depth[node] = (uch) (Max(state.ts.depth[n], state.ts.depth[m]) + 1);
|
|
tree[n].dl.dad = tree[m].dl.dad = (ush)node;
|
|
/* and insert the new node in the heap */
|
|
state.ts.heap[SMALLEST] = node++;
|
|
pqdownheap(state,tree, SMALLEST);
|
|
|
|
} while (state.ts.heap_len >= 2);
|
|
|
|
state.ts.heap[--state.ts.heap_max] = state.ts.heap[SMALLEST];
|
|
|
|
/* At this point, the fields freq and dad are set. We can now
|
|
* generate the bit lengths.
|
|
*/
|
|
gen_bitlen(state,(tree_desc *)desc);
|
|
|
|
/* The field len is now set, we can generate the bit codes */
|
|
gen_codes (state,(ct_data *)tree, max_code);
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Scan a literal or distance tree to determine the frequencies of the codes
|
|
* in the bit length tree. Updates opt_len to take into account the repeat
|
|
* counts. (The contribution of the bit length codes will be added later
|
|
* during the construction of bl_tree.)
|
|
*/
|
|
void scan_tree (TState &state,ct_data *tree, int max_code)
|
|
{
|
|
int n; /* iterates over all tree elements */
|
|
int prevlen = -1; /* last emitted length */
|
|
int curlen; /* length of current code */
|
|
int nextlen = tree[0].dl.len; /* length of next code */
|
|
int count = 0; /* repeat count of the current code */
|
|
int max_count = 7; /* max repeat count */
|
|
int min_count = 4; /* min repeat count */
|
|
|
|
if (nextlen == 0) max_count = 138, min_count = 3;
|
|
tree[max_code+1].dl.len = (ush)-1; /* guard */
|
|
|
|
for (n = 0; n <= max_code; n++) {
|
|
curlen = nextlen; nextlen = tree[n+1].dl.len;
|
|
if (++count < max_count && curlen == nextlen) {
|
|
continue;
|
|
} else if (count < min_count) {
|
|
state.ts.bl_tree[curlen].fc.freq = (ush)(state.ts.bl_tree[curlen].fc.freq + count);
|
|
} else if (curlen != 0) {
|
|
if (curlen != prevlen) state.ts.bl_tree[curlen].fc.freq++;
|
|
state.ts.bl_tree[REP_3_6].fc.freq++;
|
|
} else if (count <= 10) {
|
|
state.ts.bl_tree[REPZ_3_10].fc.freq++;
|
|
} else {
|
|
state.ts.bl_tree[REPZ_11_138].fc.freq++;
|
|
}
|
|
count = 0; prevlen = curlen;
|
|
if (nextlen == 0) {
|
|
max_count = 138, min_count = 3;
|
|
} else if (curlen == nextlen) {
|
|
max_count = 6, min_count = 3;
|
|
} else {
|
|
max_count = 7, min_count = 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Send a literal or distance tree in compressed form, using the codes in
|
|
* bl_tree.
|
|
*/
|
|
void send_tree (TState &state, ct_data *tree, int max_code)
|
|
{
|
|
int n; /* iterates over all tree elements */
|
|
int prevlen = -1; /* last emitted length */
|
|
int curlen; /* length of current code */
|
|
int nextlen = tree[0].dl.len; /* length of next code */
|
|
int count = 0; /* repeat count of the current code */
|
|
int max_count = 7; /* max repeat count */
|
|
int min_count = 4; /* min repeat count */
|
|
|
|
/* tree[max_code+1].dl.len = -1; */ /* guard already set */
|
|
if (nextlen == 0) max_count = 138, min_count = 3;
|
|
|
|
for (n = 0; n <= max_code; n++) {
|
|
curlen = nextlen; nextlen = tree[n+1].dl.len;
|
|
if (++count < max_count && curlen == nextlen) {
|
|
continue;
|
|
} else if (count < min_count) {
|
|
do { send_code(state, curlen, state.ts.bl_tree); } while (--count != 0);
|
|
|
|
} else if (curlen != 0) {
|
|
if (curlen != prevlen) {
|
|
send_code(state, curlen, state.ts.bl_tree); count--;
|
|
}
|
|
Assert(state,count >= 3 && count <= 6, " 3_6?");
|
|
send_code(state,REP_3_6, state.ts.bl_tree); send_bits(state,count-3, 2);
|
|
|
|
} else if (count <= 10) {
|
|
send_code(state,REPZ_3_10, state.ts.bl_tree); send_bits(state,count-3, 3);
|
|
|
|
} else {
|
|
send_code(state,REPZ_11_138, state.ts.bl_tree); send_bits(state,count-11, 7);
|
|
}
|
|
count = 0; prevlen = curlen;
|
|
if (nextlen == 0) {
|
|
max_count = 138, min_count = 3;
|
|
} else if (curlen == nextlen) {
|
|
max_count = 6, min_count = 3;
|
|
} else {
|
|
max_count = 7, min_count = 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Construct the Huffman tree for the bit lengths and return the index in
|
|
* bl_order of the last bit length code to send.
|
|
*/
|
|
int build_bl_tree(TState &state)
|
|
{
|
|
int max_blindex; /* index of last bit length code of non zero freq */
|
|
|
|
/* Determine the bit length frequencies for literal and distance trees */
|
|
scan_tree(state,(ct_data *)state.ts.dyn_ltree, state.ts.l_desc.max_code);
|
|
scan_tree(state,(ct_data *)state.ts.dyn_dtree, state.ts.d_desc.max_code);
|
|
|
|
/* Build the bit length tree: */
|
|
build_tree(state,(tree_desc *)(&state.ts.bl_desc));
|
|
/* opt_len now includes the length of the tree representations, except
|
|
* the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
|
|
*/
|
|
|
|
/* Determine the number of bit length codes to send. The pkzip format
|
|
* requires that at least 4 bit length codes be sent. (appnote.txt says
|
|
* 3 but the actual value used is 4.)
|
|
*/
|
|
for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
|
|
if (state.ts.bl_tree[bl_order[max_blindex]].dl.len != 0) break;
|
|
}
|
|
/* Update opt_len to include the bit length tree and counts */
|
|
state.ts.opt_len += 3*(max_blindex+1) + 5+5+4;
|
|
Trace("\ndyn trees: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);
|
|
|
|
return max_blindex;
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Send the header for a block using dynamic Huffman trees: the counts, the
|
|
* lengths of the bit length codes, the literal tree and the distance tree.
|
|
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
|
|
*/
|
|
void send_all_trees(TState &state,int lcodes, int dcodes, int blcodes)
|
|
{
|
|
int rank; /* index in bl_order */
|
|
|
|
Assert(state,lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
|
|
Assert(state,lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
|
|
"too many codes");
|
|
Trace("\nbl counts: ");
|
|
send_bits(state,lcodes-257, 5);
|
|
/* not +255 as stated in appnote.txt 1.93a or -256 in 2.04c */
|
|
send_bits(state,dcodes-1, 5);
|
|
send_bits(state,blcodes-4, 4); /* not -3 as stated in appnote.txt */
|
|
for (rank = 0; rank < blcodes; rank++) {
|
|
Trace("\nbl code %2d ", bl_order[rank]);
|
|
send_bits(state,state.ts.bl_tree[bl_order[rank]].dl.len, 3);
|
|
}
|
|
Trace("\nbl tree: sent %ld", state.bs.bits_sent);
|
|
|
|
send_tree(state,(ct_data *)state.ts.dyn_ltree, lcodes-1); /* send the literal tree */
|
|
Trace("\nlit tree: sent %ld", state.bs.bits_sent);
|
|
|
|
send_tree(state,(ct_data *)state.ts.dyn_dtree, dcodes-1); /* send the distance tree */
|
|
Trace("\ndist tree: sent %ld", state.bs.bits_sent);
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Determine the best encoding for the current block: dynamic trees, static
|
|
* trees or store, and output the encoded block to the zip file. This function
|
|
* returns the total compressed length (in bytes) for the file so far.
|
|
*/
|
|
ulg flush_block(TState &state,char *buf, ulg stored_len, int eof)
|
|
{
|
|
ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
|
|
int max_blindex; /* index of last bit length code of non zero freq */
|
|
|
|
state.ts.flag_buf[state.ts.last_flags] = state.ts.flags; /* Save the flags for the last 8 items */
|
|
|
|
/* Check if the file is ascii or binary */
|
|
if (*state.ts.file_type == (ush)UNKNOWN) set_file_type(state);
|
|
|
|
/* Construct the literal and distance trees */
|
|
build_tree(state,(tree_desc *)(&state.ts.l_desc));
|
|
Trace("\nlit data: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);
|
|
|
|
build_tree(state,(tree_desc *)(&state.ts.d_desc));
|
|
Trace("\ndist data: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);
|
|
/* At this point, opt_len and static_len are the total bit lengths of
|
|
* the compressed block data, excluding the tree representations.
|
|
*/
|
|
|
|
/* Build the bit length tree for the above two trees, and get the index
|
|
* in bl_order of the last bit length code to send.
|
|
*/
|
|
max_blindex = build_bl_tree(state);
|
|
|
|
/* Determine the best encoding. Compute first the block length in bytes */
|
|
opt_lenb = (state.ts.opt_len+3+7)>>3;
|
|
static_lenb = (state.ts.static_len+3+7)>>3;
|
|
state.ts.input_len += stored_len; /* for debugging only */
|
|
|
|
Trace("\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
|
|
opt_lenb, state.ts.opt_len, static_lenb, state.ts.static_len, stored_len,
|
|
state.ts.last_lit, state.ts.last_dist);
|
|
|
|
if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
|
|
|
|
// Originally, zip allowed the file to be transformed from a compressed
|
|
// into a stored file in the case where compression failed, there
|
|
// was only one block, and it was allowed to change. I've removed this
|
|
// possibility since the code's cleaner if no changes are allowed.
|
|
//if (stored_len <= opt_lenb && eof && state.ts.cmpr_bytelen == 0L
|
|
// && state.ts.cmpr_len_bits == 0L && state.seekable)
|
|
//{ // && state.ts.file_method != NULL
|
|
// // Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there:
|
|
// Assert(state,buf!=NULL,"block vanished");
|
|
// copy_block(state,buf, (unsigned)stored_len, 0); // without header
|
|
// state.ts.cmpr_bytelen = stored_len;
|
|
// Assert(state,false,"unimplemented *state.ts.file_method = STORE;");
|
|
// //*state.ts.file_method = STORE;
|
|
//}
|
|
//else
|
|
if (stored_len+4 <= opt_lenb && buf != (char*)NULL) {
|
|
/* 4: two words for the lengths */
|
|
/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
|
|
* Otherwise we can't have processed more than WSIZE input bytes since
|
|
* the last block flush, because compression would have been
|
|
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
|
|
* transform a block into a stored block.
|
|
*/
|
|
send_bits(state,(STORED_BLOCK<<1)+eof, 3); /* send block type */
|
|
state.ts.cmpr_bytelen += ((state.ts.cmpr_len_bits + 3 + 7) >> 3) + stored_len + 4;
|
|
state.ts.cmpr_len_bits = 0L;
|
|
|
|
copy_block(state,buf, (unsigned)stored_len, 1); /* with header */
|
|
}
|
|
else if (static_lenb == opt_lenb) {
|
|
send_bits(state,(STATIC_TREES<<1)+eof, 3);
|
|
compress_block(state,(ct_data *)state.ts.static_ltree, (ct_data *)state.ts.static_dtree);
|
|
state.ts.cmpr_len_bits += 3 + state.ts.static_len;
|
|
state.ts.cmpr_bytelen += state.ts.cmpr_len_bits >> 3;
|
|
state.ts.cmpr_len_bits &= 7L;
|
|
}
|
|
else {
|
|
send_bits(state,(DYN_TREES<<1)+eof, 3);
|
|
send_all_trees(state,state.ts.l_desc.max_code+1, state.ts.d_desc.max_code+1, max_blindex+1);
|
|
compress_block(state,(ct_data *)state.ts.dyn_ltree, (ct_data *)state.ts.dyn_dtree);
|
|
state.ts.cmpr_len_bits += 3 + state.ts.opt_len;
|
|
state.ts.cmpr_bytelen += state.ts.cmpr_len_bits >> 3;
|
|
state.ts.cmpr_len_bits &= 7L;
|
|
}
|
|
Assert(state,((state.ts.cmpr_bytelen << 3) + state.ts.cmpr_len_bits) == state.bs.bits_sent, "bad compressed size");
|
|
init_block(state);
|
|
|
|
if (eof) {
|
|
// Assert(state,input_len == isize, "bad input size");
|
|
bi_windup(state);
|
|
state.ts.cmpr_len_bits += 7; /* align on byte boundary */
|
|
}
|
|
Trace("\n");
|
|
|
|
return state.ts.cmpr_bytelen + (state.ts.cmpr_len_bits >> 3);
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Save the match info and tally the frequency counts. Return true if
|
|
* the current block must be flushed.
|
|
*/
|
|
int ct_tally (TState &state,int dist, int lc)
|
|
{
|
|
state.ts.l_buf[state.ts.last_lit++] = (uch)lc;
|
|
if (dist == 0) {
|
|
/* lc is the unmatched char */
|
|
state.ts.dyn_ltree[lc].fc.freq++;
|
|
} else {
|
|
/* Here, lc is the match length - MIN_MATCH */
|
|
dist--; /* dist = match distance - 1 */
|
|
Assert(state,(ush)dist < (ush)MAX_DIST &&
|
|
(ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
|
|
(ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match");
|
|
|
|
state.ts.dyn_ltree[state.ts.length_code[lc]+LITERALS+1].fc.freq++;
|
|
state.ts.dyn_dtree[d_code(dist)].fc.freq++;
|
|
|
|
state.ts.d_buf[state.ts.last_dist++] = (ush)dist;
|
|
state.ts.flags |= state.ts.flag_bit;
|
|
}
|
|
state.ts.flag_bit <<= 1;
|
|
|
|
/* Output the flags if they fill a byte: */
|
|
if ((state.ts.last_lit & 7) == 0) {
|
|
state.ts.flag_buf[state.ts.last_flags++] = state.ts.flags;
|
|
state.ts.flags = 0, state.ts.flag_bit = 1;
|
|
}
|
|
/* Try to guess if it is profitable to stop the current block here */
|
|
if (state.level > 2 && (state.ts.last_lit & 0xfff) == 0) {
|
|
/* Compute an upper bound for the compressed length */
|
|
ulg out_length = (ulg)state.ts.last_lit*8L;
|
|
ulg in_length = (ulg)state.ds.strstart-state.ds.block_start;
|
|
int dcode;
|
|
for (dcode = 0; dcode < D_CODES; dcode++) {
|
|
out_length += (ulg)state.ts.dyn_dtree[dcode].fc.freq*(5L+extra_dbits[dcode]);
|
|
}
|
|
out_length >>= 3;
|
|
Trace("\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
|
|
state.ts.last_lit, state.ts.last_dist, in_length, out_length,
|
|
100L - out_length*100L/in_length);
|
|
if (state.ts.last_dist < state.ts.last_lit/2 && out_length < in_length/2) return 1;
|
|
}
|
|
return (state.ts.last_lit == LIT_BUFSIZE-1 || state.ts.last_dist == DIST_BUFSIZE);
|
|
/* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
|
|
* on 16 bit machines and because stored blocks are restricted to
|
|
* 64K-1 bytes.
|
|
*/
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Send the block data compressed using the given Huffman trees
|
|
*/
|
|
void compress_block(TState &state,ct_data *ltree, ct_data *dtree)
|
|
{
|
|
unsigned dist; /* distance of matched string */
|
|
int lc; /* match length or unmatched char (if dist == 0) */
|
|
unsigned lx = 0; /* running index in l_buf */
|
|
unsigned dx = 0; /* running index in d_buf */
|
|
unsigned fx = 0; /* running index in flag_buf */
|
|
uch flag = 0; /* current flags */
|
|
unsigned code; /* the code to send */
|
|
int extra; /* number of extra bits to send */
|
|
|
|
if (state.ts.last_lit != 0) do {
|
|
if ((lx & 7) == 0) flag = state.ts.flag_buf[fx++];
|
|
lc = state.ts.l_buf[lx++];
|
|
if ((flag & 1) == 0) {
|
|
send_code(state,lc, ltree); /* send a literal byte */
|
|
} else {
|
|
/* Here, lc is the match length - MIN_MATCH */
|
|
code = state.ts.length_code[lc];
|
|
send_code(state,code+LITERALS+1, ltree); /* send the length code */
|
|
extra = extra_lbits[code];
|
|
if (extra != 0) {
|
|
lc -= state.ts.base_length[code];
|
|
send_bits(state,lc, extra); /* send the extra length bits */
|
|
}
|
|
dist = state.ts.d_buf[dx++];
|
|
/* Here, dist is the match distance - 1 */
|
|
code = d_code(dist);
|
|
Assert(state,code < D_CODES, "bad d_code");
|
|
|
|
send_code(state,code, dtree); /* send the distance code */
|
|
extra = extra_dbits[code];
|
|
if (extra != 0) {
|
|
dist -= state.ts.base_dist[code];
|
|
send_bits(state,dist, extra); /* send the extra distance bits */
|
|
}
|
|
} /* literal or match pair ? */
|
|
flag >>= 1;
|
|
} while (lx < state.ts.last_lit);
|
|
|
|
send_code(state,END_BLOCK, ltree);
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Set the file type to ASCII or BINARY, using a crude approximation:
|
|
* binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
|
|
* IN assertion: the fields freq of dyn_ltree are set and the total of all
|
|
* frequencies does not exceed 64K (to fit in an int on 16 bit machines).
|
|
*/
|
|
void set_file_type(TState &state)
|
|
{
|
|
int n = 0;
|
|
unsigned ascii_freq = 0;
|
|
unsigned bin_freq = 0;
|
|
while (n < 7) bin_freq += state.ts.dyn_ltree[n++].fc.freq;
|
|
while (n < 128) ascii_freq += state.ts.dyn_ltree[n++].fc.freq;
|
|
while (n < LITERALS) bin_freq += state.ts.dyn_ltree[n++].fc.freq;
|
|
*state.ts.file_type = (ush)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII);
|
|
}
|
|
|
|
|
|
/* ===========================================================================
|
|
* Initialize the bit string routines.
|
|
*/
|
|
void bi_init (TState &state,char *tgt_buf, unsigned tgt_size, int flsh_allowed)
|
|
{
|
|
state.bs.out_buf = tgt_buf;
|
|
state.bs.out_size = tgt_size;
|
|
state.bs.out_offset = 0;
|
|
state.bs.flush_flg = flsh_allowed;
|
|
|
|
state.bs.bi_buf = 0;
|
|
state.bs.bi_valid = 0;
|
|
state.bs.bits_sent = 0L;
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Send a value on a given number of bits.
|
|
* IN assertion: length <= 16 and value fits in length bits.
|
|
*/
|
|
void send_bits(TState &state,int value, int length)
|
|
{
|
|
Assert(state,length > 0 && length <= 15, "invalid length");
|
|
state.bs.bits_sent += (ulg)length;
|
|
/* If not enough room in bi_buf, use (bi_valid) bits from bi_buf and
|
|
* (Buf_size - bi_valid) bits from value to flush the filled bi_buf,
|
|
* then fill in the rest of (value), leaving (length - (Buf_size-bi_valid))
|
|
* unused bits in bi_buf.
|
|
*/
|
|
state.bs.bi_buf |= (value << state.bs.bi_valid);
|
|
state.bs.bi_valid += length;
|
|
if (state.bs.bi_valid > (int)Buf_size) {
|
|
PUTSHORT(state,state.bs.bi_buf);
|
|
state.bs.bi_valid -= Buf_size;
|
|
state.bs.bi_buf = (unsigned)value >> (length - state.bs.bi_valid);
|
|
}
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Reverse the first len bits of a code, using straightforward code (a faster
|
|
* method would use a table)
|
|
* IN assertion: 1 <= len <= 15
|
|
*/
|
|
unsigned bi_reverse(unsigned code, int len)
|
|
{
|
|
unsigned res = 0;
|
|
do {
|
|
res |= code & 1;
|
|
code >>= 1, res <<= 1;
|
|
} while (--len > 0);
|
|
return res >> 1;
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Write out any remaining bits in an incomplete byte.
|
|
*/
|
|
void bi_windup(TState &state)
|
|
{
|
|
if (state.bs.bi_valid > 8) {
|
|
PUTSHORT(state,state.bs.bi_buf);
|
|
} else if (state.bs.bi_valid > 0) {
|
|
PUTBYTE(state,state.bs.bi_buf);
|
|
}
|
|
if (state.bs.flush_flg) {
|
|
state.flush_outbuf(state.param, state.bs.out_buf, &state.bs.out_offset);
|
|
}
|
|
state.bs.bi_buf = 0;
|
|
state.bs.bi_valid = 0;
|
|
state.bs.bits_sent = (state.bs.bits_sent+7) & ~7;
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Copy a stored block to the zip file, storing first the length and its
|
|
* one's complement if requested.
|
|
*/
|
|
void copy_block(TState &state, char *block, unsigned len, int header)
|
|
{
|
|
bi_windup(state); /* align on byte boundary */
|
|
|
|
if (header) {
|
|
PUTSHORT(state,(ush)len);
|
|
PUTSHORT(state,(ush)~len);
|
|
state.bs.bits_sent += 2*16;
|
|
}
|
|
if (state.bs.flush_flg) {
|
|
state.flush_outbuf(state.param, state.bs.out_buf, &state.bs.out_offset);
|
|
state.bs.out_offset = len;
|
|
state.flush_outbuf(state.param, block, &state.bs.out_offset);
|
|
} else if (state.bs.out_offset + len > state.bs.out_size) {
|
|
Assert(state,false,"output buffer too small for in-memory compression");
|
|
} else {
|
|
memcpy(state.bs.out_buf + state.bs.out_offset, block, len);
|
|
state.bs.out_offset += len;
|
|
}
|
|
state.bs.bits_sent += (ulg)len<<3;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* ===========================================================================
|
|
* Prototypes for functions.
|
|
*/
|
|
|
|
void fill_window (TState &state);
|
|
ulg deflate_fast (TState &state);
|
|
|
|
int longest_match (TState &state,IPos cur_match);
|
|
|
|
|
|
/* ===========================================================================
|
|
* Update a hash value with the given input byte
|
|
* IN assertion: all calls to to UPDATE_HASH are made with consecutive
|
|
* input characters, so that a running hash key can be computed from the
|
|
* previous key instead of complete recalculation each time.
|
|
*/
|
|
#define UPDATE_HASH(h,c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
|
|
|
|
/* ===========================================================================
|
|
* Insert string s in the dictionary and set match_head to the previous head
|
|
* of the hash chain (the most recent string with same hash key). Return
|
|
* the previous length of the hash chain.
|
|
* IN assertion: all calls to to INSERT_STRING are made with consecutive
|
|
* input characters and the first MIN_MATCH bytes of s are valid
|
|
* (except for the last MIN_MATCH-1 bytes of the input file).
|
|
*/
|
|
#define INSERT_STRING(s, match_head) \
|
|
(UPDATE_HASH(state.ds.ins_h, state.ds.window[(s) + (MIN_MATCH-1)]), \
|
|
state.ds.prev[(s) & WMASK] = match_head = state.ds.head[state.ds.ins_h], \
|
|
state.ds.head[state.ds.ins_h] = (s))
|
|
|
|
/* ===========================================================================
|
|
* Initialize the "longest match" routines for a new file
|
|
*
|
|
* IN assertion: window_size is > 0 if the input file is already read or
|
|
* mmap'ed in the window[] array, 0 otherwise. In the first case,
|
|
* window_size is sufficient to contain the whole input file plus
|
|
* MIN_LOOKAHEAD bytes (to avoid referencing memory beyond the end
|
|
* of window[] when looking for matches towards the end).
|
|
*/
|
|
void lm_init (TState &state, int pack_level, ush *flags)
|
|
{
|
|
unsigned j;
|
|
|
|
Assert(state,pack_level>=1 && pack_level<=8,"bad pack level");
|
|
|
|
/* Do not slide the window if the whole input is already in memory
|
|
* (window_size > 0)
|
|
*/
|
|
state.ds.sliding = 0;
|
|
if (state.ds.window_size == 0L) {
|
|
state.ds.sliding = 1;
|
|
state.ds.window_size = (ulg)2L*WSIZE;
|
|
}
|
|
|
|
/* Initialize the hash table (avoiding 64K overflow for 16 bit systems).
|
|
* prev[] will be initialized on the fly.
|
|
*/
|
|
state.ds.head[HASH_SIZE-1] = NIL;
|
|
memset((char*)state.ds.head, NIL, (unsigned)(HASH_SIZE-1)*sizeof(*state.ds.head));
|
|
|
|
/* Set the default configuration parameters:
|
|
*/
|
|
state.ds.max_lazy_match = configuration_table[pack_level].max_lazy;
|
|
state.ds.good_match = configuration_table[pack_level].good_length;
|
|
state.ds.nice_match = configuration_table[pack_level].nice_length;
|
|
state.ds.max_chain_length = configuration_table[pack_level].max_chain;
|
|
if (pack_level <= 2) {
|
|
*flags |= FAST;
|
|
} else if (pack_level >= 8) {
|
|
*flags |= SLOW;
|
|
}
|
|
/* ??? reduce max_chain_length for binary files */
|
|
|
|
state.ds.strstart = 0;
|
|
state.ds.block_start = 0L;
|
|
|
|
j = WSIZE;
|
|
j <<= 1; // Can read 64K in one step
|
|
state.ds.lookahead = state.readfunc(state, (char*)state.ds.window, j);
|
|
|
|
if (state.ds.lookahead == 0 || state.ds.lookahead == (unsigned)EOF) {
|
|
state.ds.eofile = 1, state.ds.lookahead = 0;
|
|
return;
|
|
}
|
|
state.ds.eofile = 0;
|
|
/* Make sure that we always have enough lookahead. This is important
|
|
* if input comes from a device such as a tty.
|
|
*/
|
|
if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state);
|
|
|
|
state.ds.ins_h = 0;
|
|
for (j=0; j<MIN_MATCH-1; j++) UPDATE_HASH(state.ds.ins_h, state.ds.window[j]);
|
|
/* If lookahead < MIN_MATCH, ins_h is garbage, but this is
|
|
* not important since only literal bytes will be emitted.
|
|
*/
|
|
}
|
|
|
|
|
|
/* ===========================================================================
|
|
* Set match_start to the longest match starting at the given string and
|
|
* return its length. Matches shorter or equal to prev_length are discarded,
|
|
* in which case the result is equal to prev_length and match_start is
|
|
* garbage.
|
|
* IN assertions: cur_match is the head of the hash chain for the current
|
|
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
|
|
*/
|
|
// For 80x86 and 680x0 and ARM, an optimized version is in match.asm or
|
|
// match.S. The code is functionally equivalent, so you can use the C version
|
|
// if desired. Which I do so desire!
|
|
int longest_match(TState &state,IPos cur_match)
|
|
{
|
|
unsigned chain_length = state.ds.max_chain_length; /* max hash chain length */
|
|
uch far *scan = state.ds.window + state.ds.strstart; /* current string */
|
|
uch far *match; /* matched string */
|
|
int len; /* length of current match */
|
|
int best_len = state.ds.prev_length; /* best match length so far */
|
|
IPos limit = state.ds.strstart > (IPos)MAX_DIST ? state.ds.strstart - (IPos)MAX_DIST : NIL;
|
|
/* Stop when cur_match becomes <= limit. To simplify the code,
|
|
* we prevent matches with the string of window index 0.
|
|
*/
|
|
|
|
// The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
|
|
// It is easy to get rid of this optimization if necessary.
|
|
Assert(state,HASH_BITS>=8 && MAX_MATCH==258,"Code too clever");
|
|
|
|
|
|
|
|
uch far *strend = state.ds.window + state.ds.strstart + MAX_MATCH;
|
|
uch scan_end1 = scan[best_len-1];
|
|
uch scan_end = scan[best_len];
|
|
|
|
/* Do not waste too much time if we already have a good match: */
|
|
if (state.ds.prev_length >= state.ds.good_match) {
|
|
chain_length >>= 2;
|
|
}
|
|
|
|
Assert(state,state.ds.strstart <= state.ds.window_size-MIN_LOOKAHEAD, "insufficient lookahead");
|
|
|
|
do {
|
|
Assert(state,cur_match < state.ds.strstart, "no future");
|
|
match = state.ds.window + cur_match;
|
|
|
|
/* Skip to next match if the match length cannot increase
|
|
* or if the match length is less than 2:
|
|
*/
|
|
if (match[best_len] != scan_end ||
|
|
match[best_len-1] != scan_end1 ||
|
|
*match != *scan ||
|
|
*++match != scan[1]) continue;
|
|
|
|
/* The check at best_len-1 can be removed because it will be made
|
|
* again later. (This heuristic is not always a win.)
|
|
* It is not necessary to compare scan[2] and match[2] since they
|
|
* are always equal when the other bytes match, given that
|
|
* the hash keys are equal and that HASH_BITS >= 8.
|
|
*/
|
|
scan += 2, match++;
|
|
|
|
/* We check for insufficient lookahead only every 8th comparison;
|
|
* the 256th check will be made at strstart+258.
|
|
*/
|
|
do {
|
|
} while (*++scan == *++match && *++scan == *++match &&
|
|
*++scan == *++match && *++scan == *++match &&
|
|
*++scan == *++match && *++scan == *++match &&
|
|
*++scan == *++match && *++scan == *++match &&
|
|
scan < strend);
|
|
|
|
Assert(state,scan <= state.ds.window+(unsigned)(state.ds.window_size-1), "wild scan");
|
|
|
|
len = MAX_MATCH - (int)(strend - scan);
|
|
scan = strend - MAX_MATCH;
|
|
|
|
|
|
if (len > best_len) {
|
|
state.ds.match_start = cur_match;
|
|
best_len = len;
|
|
if (len >= state.ds.nice_match) break;
|
|
scan_end1 = scan[best_len-1];
|
|
scan_end = scan[best_len];
|
|
}
|
|
} while ((cur_match = state.ds.prev[cur_match & WMASK]) > limit
|
|
&& --chain_length != 0);
|
|
|
|
return best_len;
|
|
}
|
|
|
|
|
|
|
|
#define check_match(state,start, match, length)
|
|
// or alternatively...
|
|
//void check_match(TState &state,IPos start, IPos match, int length)
|
|
//{ // check that the match is indeed a match
|
|
// if (memcmp((char*)state.ds.window + match,
|
|
// (char*)state.ds.window + start, length) != EQUAL) {
|
|
// fprintf(stderr,
|
|
// " start %d, match %d, length %d\n",
|
|
// start, match, length);
|
|
// error("invalid match");
|
|
// }
|
|
// if (state.verbose > 1) {
|
|
// fprintf(stderr,"\\[%d,%d]", start-match, length);
|
|
// do { fprintf(stdout,"%c",state.ds.window[start++]); } while (--length != 0);
|
|
// }
|
|
//}
|
|
|
|
/* ===========================================================================
|
|
* Fill the window when the lookahead becomes insufficient.
|
|
* Updates strstart and lookahead, and sets eofile if end of input file.
|
|
*
|
|
* IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
|
|
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
|
|
* At least one byte has been read, or eofile is set; file reads are
|
|
* performed for at least two bytes (required for the translate_eol option).
|
|
*/
|
|
void fill_window(TState &state)
|
|
{
|
|
unsigned n, m;
|
|
unsigned more; /* Amount of free space at the end of the window. */
|
|
|
|
do {
|
|
more = (unsigned)(state.ds.window_size - (ulg)state.ds.lookahead - (ulg)state.ds.strstart);
|
|
|
|
/* If the window is almost full and there is insufficient lookahead,
|
|
* move the upper half to the lower one to make room in the upper half.
|
|
*/
|
|
if (more == (unsigned)EOF) {
|
|
/* Very unlikely, but possible on 16 bit machine if strstart == 0
|
|
* and lookahead == 1 (input done one byte at time)
|
|
*/
|
|
more--;
|
|
|
|
/* For MMAP or BIG_MEM, the whole input file is already in memory so
|
|
* we must not perform sliding. We must however call (*read_buf)() in
|
|
* order to compute the crc, update lookahead and possibly set eofile.
|
|
*/
|
|
} else if (state.ds.strstart >= WSIZE+MAX_DIST && state.ds.sliding) {
|
|
|
|
/* By the IN assertion, the window is not empty so we can't confuse
|
|
* more == 0 with more == 64K on a 16 bit machine.
|
|
*/
|
|
memcpy((char*)state.ds.window, (char*)state.ds.window+WSIZE, (unsigned)WSIZE);
|
|
state.ds.match_start -= WSIZE;
|
|
state.ds.strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */
|
|
|
|
state.ds.block_start -= (long) WSIZE;
|
|
|
|
for (n = 0; n < HASH_SIZE; n++) {
|
|
m = state.ds.head[n];
|
|
state.ds.head[n] = (Pos)(m >= WSIZE ? m-WSIZE : NIL);
|
|
}
|
|
for (n = 0; n < WSIZE; n++) {
|
|
m = state.ds.prev[n];
|
|
state.ds.prev[n] = (Pos)(m >= WSIZE ? m-WSIZE : NIL);
|
|
/* If n is not on any hash chain, prev[n] is garbage but
|
|
* its value will never be used.
|
|
*/
|
|
}
|
|
more += WSIZE;
|
|
}
|
|
if (state.ds.eofile) return;
|
|
|
|
/* If there was no sliding:
|
|
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
|
|
* more == window_size - lookahead - strstart
|
|
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
|
|
* => more >= window_size - 2*WSIZE + 2
|
|
* In the MMAP or BIG_MEM case (not yet supported in gzip),
|
|
* window_size == input_size + MIN_LOOKAHEAD &&
|
|
* strstart + lookahead <= input_size => more >= MIN_LOOKAHEAD.
|
|
* Otherwise, window_size == 2*WSIZE so more >= 2.
|
|
* If there was sliding, more >= WSIZE. So in all cases, more >= 2.
|
|
*/
|
|
Assert(state,more >= 2, "more < 2");
|
|
|
|
n = state.readfunc(state, (char*)state.ds.window+state.ds.strstart+state.ds.lookahead, more);
|
|
|
|
if (n == 0 || n == (unsigned)EOF) {
|
|
state.ds.eofile = 1;
|
|
} else {
|
|
state.ds.lookahead += n;
|
|
}
|
|
} while (state.ds.lookahead < MIN_LOOKAHEAD && !state.ds.eofile);
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Flush the current block, with given end-of-file flag.
|
|
* IN assertion: strstart is set to the end of the current match.
|
|
*/
|
|
#define FLUSH_BLOCK(state,eof) \
|
|
flush_block(state,state.ds.block_start >= 0L ? (char*)&state.ds.window[(unsigned)state.ds.block_start] : \
|
|
(char*)NULL, (long)state.ds.strstart - state.ds.block_start, (eof))
|
|
|
|
/* ===========================================================================
|
|
* Processes a new input file and return its compressed length. This
|
|
* function does not perform lazy evaluation of matches and inserts
|
|
* new strings in the dictionary only for unmatched strings or for short
|
|
* matches. It is used only for the fast compression options.
|
|
*/
|
|
ulg deflate_fast(TState &state)
|
|
{
|
|
IPos hash_head = NIL; /* head of the hash chain */
|
|
int flush; /* set if current block must be flushed */
|
|
unsigned match_length = 0; /* length of best match */
|
|
|
|
state.ds.prev_length = MIN_MATCH-1;
|
|
while (state.ds.lookahead != 0) {
|
|
/* Insert the string window[strstart .. strstart+2] in the
|
|
* dictionary, and set hash_head to the head of the hash chain:
|
|
*/
|
|
if (state.ds.lookahead >= MIN_MATCH)
|
|
INSERT_STRING(state.ds.strstart, hash_head);
|
|
|
|
/* Find the longest match, discarding those <= prev_length.
|
|
* At this point we have always match_length < MIN_MATCH
|
|
*/
|
|
if (hash_head != NIL && state.ds.strstart - hash_head <= MAX_DIST) {
|
|
/* To simplify the code, we prevent matches with the string
|
|
* of window index 0 (in particular we have to avoid a match
|
|
* of the string with itself at the start of the input file).
|
|
*/
|
|
/* Do not look for matches beyond the end of the input.
|
|
* This is necessary to make deflate deterministic.
|
|
*/
|
|
if ((unsigned)state.ds.nice_match > state.ds.lookahead) state.ds.nice_match = (int)state.ds.lookahead;
|
|
match_length = longest_match (state,hash_head);
|
|
/* longest_match() sets match_start */
|
|
if (match_length > state.ds.lookahead) match_length = state.ds.lookahead;
|
|
}
|
|
if (match_length >= MIN_MATCH) {
|
|
check_match(state,state.ds.strstart, state.ds.match_start, match_length);
|
|
|
|
flush = ct_tally(state,state.ds.strstart-state.ds.match_start, match_length - MIN_MATCH);
|
|
|
|
state.ds.lookahead -= match_length;
|
|
|
|
/* Insert new strings in the hash table only if the match length
|
|
* is not too large. This saves time but degrades compression.
|
|
*/
|
|
if (match_length <= state.ds.max_insert_length
|
|
&& state.ds.lookahead >= MIN_MATCH) {
|
|
match_length--; /* string at strstart already in hash table */
|
|
do {
|
|
state.ds.strstart++;
|
|
INSERT_STRING(state.ds.strstart, hash_head);
|
|
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
|
|
* always MIN_MATCH bytes ahead.
|
|
*/
|
|
} while (--match_length != 0);
|
|
state.ds.strstart++;
|
|
} else {
|
|
state.ds.strstart += match_length;
|
|
match_length = 0;
|
|
state.ds.ins_h = state.ds.window[state.ds.strstart];
|
|
UPDATE_HASH(state.ds.ins_h, state.ds.window[state.ds.strstart+1]);
|
|
Assert(state,MIN_MATCH==3,"Call UPDATE_HASH() MIN_MATCH-3 more times");
|
|
}
|
|
} else {
|
|
/* No match, output a literal byte */
|
|
flush = ct_tally (state,0, state.ds.window[state.ds.strstart]);
|
|
state.ds.lookahead--;
|
|
state.ds.strstart++;
|
|
}
|
|
if (flush) FLUSH_BLOCK(state,0), state.ds.block_start = state.ds.strstart;
|
|
|
|
/* Make sure that we always have enough lookahead, except
|
|
* at the end of the input file. We need MAX_MATCH bytes
|
|
* for the next match, plus MIN_MATCH bytes to insert the
|
|
* string following the next match.
|
|
*/
|
|
if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state);
|
|
}
|
|
return FLUSH_BLOCK(state,1); /* eof */
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Same as above, but achieves better compression. We use a lazy
|
|
* evaluation for matches: a match is finally adopted only if there is
|
|
* no better match at the next window position.
|
|
*/
|
|
ulg deflate(TState &state)
|
|
{
|
|
IPos hash_head = NIL; /* head of hash chain */
|
|
IPos prev_match; /* previous match */
|
|
int flush; /* set if current block must be flushed */
|
|
int match_available = 0; /* set if previous match exists */
|
|
unsigned match_length = MIN_MATCH-1; /* length of best match */
|
|
|
|
if (state.level <= 3) return deflate_fast(state); /* optimized for speed */
|
|
|
|
/* Process the input block. */
|
|
while (state.ds.lookahead != 0) {
|
|
/* Insert the string window[strstart .. strstart+2] in the
|
|
* dictionary, and set hash_head to the head of the hash chain:
|
|
*/
|
|
if (state.ds.lookahead >= MIN_MATCH)
|
|
INSERT_STRING(state.ds.strstart, hash_head);
|
|
|
|
/* Find the longest match, discarding those <= prev_length.
|
|
*/
|
|
state.ds.prev_length = match_length, prev_match = state.ds.match_start;
|
|
match_length = MIN_MATCH-1;
|
|
|
|
if (hash_head != NIL && state.ds.prev_length < state.ds.max_lazy_match &&
|
|
state.ds.strstart - hash_head <= MAX_DIST) {
|
|
/* To simplify the code, we prevent matches with the string
|
|
* of window index 0 (in particular we have to avoid a match
|
|
* of the string with itself at the start of the input file).
|
|
*/
|
|
/* Do not look for matches beyond the end of the input.
|
|
* This is necessary to make deflate deterministic.
|
|
*/
|
|
if ((unsigned)state.ds.nice_match > state.ds.lookahead) state.ds.nice_match = (int)state.ds.lookahead;
|
|
match_length = longest_match (state,hash_head);
|
|
/* longest_match() sets match_start */
|
|
if (match_length > state.ds.lookahead) match_length = state.ds.lookahead;
|
|
|
|
/* Ignore a length 3 match if it is too distant: */
|
|
if (match_length == MIN_MATCH && state.ds.strstart-state.ds.match_start > TOO_FAR){
|
|
/* If prev_match is also MIN_MATCH, match_start is garbage
|
|
* but we will ignore the current match anyway.
|
|
*/
|
|
match_length = MIN_MATCH-1;
|
|
}
|
|
}
|
|
/* If there was a match at the previous step and the current
|
|
* match is not better, output the previous match:
|
|
*/
|
|
if (state.ds.prev_length >= MIN_MATCH && match_length <= state.ds.prev_length) {
|
|
unsigned max_insert = state.ds.strstart + state.ds.lookahead - MIN_MATCH;
|
|
check_match(state,state.ds.strstart-1, prev_match, state.ds.prev_length);
|
|
flush = ct_tally(state,state.ds.strstart-1-prev_match, state.ds.prev_length - MIN_MATCH);
|
|
|
|
/* Insert in hash table all strings up to the end of the match.
|
|
* strstart-1 and strstart are already inserted.
|
|
*/
|
|
state.ds.lookahead -= state.ds.prev_length-1;
|
|
state.ds.prev_length -= 2;
|
|
do {
|
|
if (++state.ds.strstart <= max_insert) {
|
|
INSERT_STRING(state.ds.strstart, hash_head);
|
|
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
|
|
* always MIN_MATCH bytes ahead.
|
|
*/
|
|
}
|
|
} while (--state.ds.prev_length != 0);
|
|
state.ds.strstart++;
|
|
match_available = 0;
|
|
match_length = MIN_MATCH-1;
|
|
|
|
if (flush) FLUSH_BLOCK(state,0), state.ds.block_start = state.ds.strstart;
|
|
|
|
} else if (match_available) {
|
|
/* If there was no match at the previous position, output a
|
|
* single literal. If there was a match but the current match
|
|
* is longer, truncate the previous match to a single literal.
|
|
*/
|
|
if (ct_tally (state,0, state.ds.window[state.ds.strstart-1])) {
|
|
FLUSH_BLOCK(state,0), state.ds.block_start = state.ds.strstart;
|
|
}
|
|
state.ds.strstart++;
|
|
state.ds.lookahead--;
|
|
} else {
|
|
/* There is no previous match to compare with, wait for
|
|
* the next step to decide.
|
|
*/
|
|
match_available = 1;
|
|
state.ds.strstart++;
|
|
state.ds.lookahead--;
|
|
}
|
|
// Assert(state,strstart <= isize && lookahead <= isize, "a bit too far");
|
|
|
|
/* Make sure that we always have enough lookahead, except
|
|
* at the end of the input file. We need MAX_MATCH bytes
|
|
* for the next match, plus MIN_MATCH bytes to insert the
|
|
* string following the next match.
|
|
*/
|
|
if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state);
|
|
}
|
|
if (match_available) ct_tally (state,0, state.ds.window[state.ds.strstart-1]);
|
|
|
|
return FLUSH_BLOCK(state,1); /* eof */
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int putlocal(struct zlist far *z, WRITEFUNC wfunc,void *param)
|
|
{ // Write a local header described by *z to file *f. Return a ZE_ error code.
|
|
PUTLG(LOCSIG, f);
|
|
PUTSH(z->ver, f);
|
|
PUTSH(z->lflg, f);
|
|
PUTSH(z->how, f);
|
|
PUTLG(z->tim, f);
|
|
PUTLG(z->crc, f);
|
|
PUTLG(z->siz, f);
|
|
PUTLG(z->len, f);
|
|
PUTSH(z->nam, f);
|
|
PUTSH(z->ext, f);
|
|
size_t res = (size_t)wfunc(param, z->iname, (unsigned int)z->nam);
|
|
if (res!=z->nam) return ZE_TEMP;
|
|
if (z->ext)
|
|
{ res = (size_t)wfunc(param, z->extra, (unsigned int)z->ext);
|
|
if (res!=z->ext) return ZE_TEMP;
|
|
}
|
|
return ZE_OK;
|
|
}
|
|
|
|
int putextended(struct zlist far *z, WRITEFUNC wfunc, void *param)
|
|
{ // Write an extended local header described by *z to file *f. Returns a ZE_ code
|
|
PUTLG(EXTLOCSIG, f);
|
|
PUTLG(z->crc, f);
|
|
PUTLG(z->siz, f);
|
|
PUTLG(z->len, f);
|
|
return ZE_OK;
|
|
}
|
|
|
|
int putcentral(struct zlist far *z, WRITEFUNC wfunc, void *param)
|
|
{ // Write a central header entry of *z to file *f. Returns a ZE_ code.
|
|
PUTLG(CENSIG, f);
|
|
PUTSH(z->vem, f);
|
|
PUTSH(z->ver, f);
|
|
PUTSH(z->flg, f);
|
|
PUTSH(z->how, f);
|
|
PUTLG(z->tim, f);
|
|
PUTLG(z->crc, f);
|
|
PUTLG(z->siz, f);
|
|
PUTLG(z->len, f);
|
|
PUTSH(z->nam, f);
|
|
PUTSH(z->cext, f);
|
|
PUTSH(z->com, f);
|
|
PUTSH(z->dsk, f);
|
|
PUTSH(z->att, f);
|
|
PUTLG(z->atx, f);
|
|
PUTLG(z->off, f);
|
|
if ((size_t)wfunc(param, z->iname, (unsigned int)z->nam) != z->nam ||
|
|
(z->cext && (size_t)wfunc(param, z->cextra, (unsigned int)z->cext) != z->cext) ||
|
|
(z->com && (size_t)wfunc(param, z->comment, (unsigned int)z->com) != z->com))
|
|
return ZE_TEMP;
|
|
return ZE_OK;
|
|
}
|
|
|
|
|
|
int putend(int n, ulg s, ulg c, extent m, char *z, WRITEFUNC wfunc, void *param)
|
|
{ // write the end of the central-directory-data to file *f.
|
|
PUTLG(ENDSIG, f);
|
|
PUTSH(0, f);
|
|
PUTSH(0, f);
|
|
PUTSH(n, f);
|
|
PUTSH(n, f);
|
|
PUTLG(s, f);
|
|
PUTLG(c, f);
|
|
PUTSH(m, f);
|
|
// Write the comment, if any
|
|
if (m && wfunc(param, z, (unsigned int)m) != m) return ZE_TEMP;
|
|
return ZE_OK;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const ulg crc_table[256] = {
|
|
0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
|
|
0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
|
|
0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
|
|
0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
|
|
0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
|
|
0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
|
|
0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
|
|
0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
|
|
0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
|
|
0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
|
|
0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
|
|
0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
|
|
0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
|
|
0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
|
|
0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
|
|
0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
|
|
0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
|
|
0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
|
|
0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
|
|
0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
|
|
0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
|
|
0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
|
|
0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
|
|
0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
|
|
0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
|
|
0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
|
|
0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
|
|
0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
|
|
0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
|
|
0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
|
|
0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
|
|
0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
|
|
0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
|
|
0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
|
|
0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
|
|
0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
|
|
0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
|
|
0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
|
|
0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
|
|
0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
|
|
0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
|
|
0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
|
|
0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
|
|
0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
|
|
0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
|
|
0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
|
|
0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
|
|
0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
|
|
0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
|
|
0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
|
|
0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
|
|
0x2d02ef8dL
|
|
};
|
|
|
|
#define CRC32(c, b) (crc_table[((int)(c) ^ (b)) & 0xff] ^ ((c) >> 8))
|
|
#define DO1(buf) crc = CRC32(crc, *buf++)
|
|
#define DO2(buf) DO1(buf); DO1(buf)
|
|
#define DO4(buf) DO2(buf); DO2(buf)
|
|
#define DO8(buf) DO4(buf); DO4(buf)
|
|
|
|
ulg crc32(ulg crc, const uch *buf, extent len)
|
|
{ if (buf==NULL) return 0L;
|
|
crc = crc ^ 0xffffffffL;
|
|
while (len >= 8) {DO8(buf); len -= 8;}
|
|
if (len) do {DO1(buf);} while (--len);
|
|
return crc ^ 0xffffffffL; // (instead of ~c for 64-bit machines)
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool HasZipSuffix(const char *fn)
|
|
{ const char *ext = fn+strlen(fn);
|
|
while (ext>fn && *ext!='.') ext--;
|
|
if (ext==fn && *ext!='.') return false;
|
|
if (_stricmp(ext,".Z")==0) return true;
|
|
if (_stricmp(ext,".zip")==0) return true;
|
|
if (_stricmp(ext,".zoo")==0) return true;
|
|
if (_stricmp(ext,".arc")==0) return true;
|
|
if (_stricmp(ext,".lzh")==0) return true;
|
|
if (_stricmp(ext,".arj")==0) return true;
|
|
if (_stricmp(ext,".gz")==0) return true;
|
|
if (_stricmp(ext,".tgz")==0) return true;
|
|
return false;
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
time_t filetime2timet(const FILETIME ft)
|
|
{ SYSTEMTIME st; FileTimeToSystemTime(&ft,&st);
|
|
if (st.wYear<1970) {st.wYear=1970; st.wMonth=1; st.wDay=1;}
|
|
if (st.wYear>=2038) {st.wYear=2037; st.wMonth=12; st.wDay=31;}
|
|
struct tm tm;
|
|
tm.tm_sec = st.wSecond;
|
|
tm.tm_min = st.wMinute;
|
|
tm.tm_hour = st.wHour;
|
|
tm.tm_mday = st.wDay;
|
|
tm.tm_mon = st.wMonth-1;
|
|
tm.tm_year = st.wYear-1900;
|
|
tm.tm_isdst = 0;
|
|
time_t t = mktime(&tm);
|
|
return t;
|
|
}
|
|
|
|
ZRESULT GetFileInfo(HANDLE hf, ulg *attr, long *size, iztimes *times, ulg *timestamp)
|
|
{
|
|
DWORD type=GetFileType(hf);
|
|
if (type!=FILE_TYPE_DISK)
|
|
return ZR_NOTINITED;
|
|
// The handle must be a handle to a file
|
|
// The date and time is returned in a long with the date most significant to allow
|
|
// unsigned integer comparison of absolute times. The attributes have two
|
|
// high bytes unix attr, and two low bytes a mapping of that to DOS attr.
|
|
//struct stat s; int res=stat(fn,&s); if (res!=0) return false;
|
|
// translate windows file attributes into zip ones.
|
|
BY_HANDLE_FILE_INFORMATION bhi;
|
|
BOOL res=GetFileInformationByHandle(hf,&bhi);
|
|
if (!res)
|
|
return ZR_NOFILE;
|
|
FileTimeToLocalFileTime( &bhi.ftLastAccessTime, &bhi.ftLastAccessTime );
|
|
FileTimeToLocalFileTime( &bhi.ftLastWriteTime, &bhi.ftLastWriteTime );
|
|
FileTimeToLocalFileTime( &bhi.ftCreationTime, &bhi.ftCreationTime );
|
|
DWORD fa=bhi.dwFileAttributes;
|
|
ulg a=0;
|
|
// Zip uses the lower word for its interpretation of windows stuff
|
|
if (fa&FILE_ATTRIBUTE_READONLY) a|=0x01;
|
|
if (fa&FILE_ATTRIBUTE_HIDDEN) a|=0x02;
|
|
if (fa&FILE_ATTRIBUTE_SYSTEM) a|=0x04;
|
|
if (fa&FILE_ATTRIBUTE_DIRECTORY)a|=0x10;
|
|
if (fa&FILE_ATTRIBUTE_ARCHIVE) a|=0x20;
|
|
// It uses the upper word for standard unix attr, which we must manually construct
|
|
if (fa&FILE_ATTRIBUTE_DIRECTORY)a|=0x40000000; // directory
|
|
else a|=0x80000000; // normal file
|
|
a|=0x01000000; // readable
|
|
if (fa&FILE_ATTRIBUTE_READONLY) {}
|
|
else a|=0x00800000; // writeable
|
|
// now just a small heuristic to check if it's an executable:
|
|
DWORD red, hsize=GetFileSize(hf,NULL); if (hsize>40)
|
|
{ SetFilePointer(hf,0,NULL,FILE_BEGIN); unsigned short magic; ReadFile(hf,&magic,sizeof(magic),&red,NULL);
|
|
SetFilePointer(hf,36,NULL,FILE_BEGIN); unsigned long hpos; ReadFile(hf,&hpos,sizeof(hpos),&red,NULL);
|
|
if (magic==0x54AD && hsize>hpos+4+20+28)
|
|
{ SetFilePointer(hf,hpos,NULL,FILE_BEGIN); unsigned long signature; ReadFile(hf,&signature,sizeof(signature),&red,NULL);
|
|
if (signature==IMAGE_DOS_SIGNATURE || signature==IMAGE_OS2_SIGNATURE
|
|
|| signature==IMAGE_OS2_SIGNATURE_LE || signature==IMAGE_NT_SIGNATURE)
|
|
{ a |= 0x00400000; // executable
|
|
}
|
|
}
|
|
}
|
|
//
|
|
if (attr!=NULL) *attr = a;
|
|
if (size!=NULL) *size = hsize;
|
|
if (times!=NULL)
|
|
{ // time_t is 32bit number of seconds elapsed since 0:0:0GMT, Jan1, 1970.
|
|
// but FILETIME is 64bit number of 100-nanosecs since Jan1, 1601
|
|
times->atime = filetime2timet(bhi.ftLastAccessTime);
|
|
times->mtime = filetime2timet(bhi.ftLastWriteTime);
|
|
times->ctime = filetime2timet(bhi.ftCreationTime);
|
|
}
|
|
if (timestamp!=NULL)
|
|
{ WORD dosdate,dostime;
|
|
FileTimeToDosDateTime(&bhi.ftLastWriteTime,&dosdate,&dostime);
|
|
*timestamp = (WORD)dostime | (((DWORD)dosdate)<<16);
|
|
}
|
|
return ZR_OK;
|
|
}
|
|
#endif
|
|
|
|
#ifndef _WIN32
|
|
int timet_to_timestamp( time_t time )
|
|
{
|
|
struct tm *tm;
|
|
tm = localtime( &time );
|
|
if ( !tm )
|
|
return 0;
|
|
|
|
int date = 0;
|
|
|
|
date |= ( ( ( tm->tm_year & 0x7f ) + ( 1900 - 1980 ) ) << 9 );
|
|
date |= ( ( ( tm->tm_mon & 0x0f ) + 1 ) << 5 );
|
|
date |= ( ( ( tm->tm_mday & 0x1f ) ) );
|
|
|
|
int timepart = 0;
|
|
|
|
timepart |= ( ( ( tm->tm_hour & 0x1f ) ) << 11 );
|
|
timepart |= ( ( ( tm->tm_min & 0x3f ) ) << 5 );
|
|
timepart |= ( ( ( tm->tm_sec & 0x3e ) ) >> 1 );
|
|
|
|
return time | (date << 16 );
|
|
}
|
|
#endif
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
class TZip
|
|
{ public:
|
|
TZip() : hfout(0),hmapout(0),zfis(0),obuf(0),hfin(0),writ(0),oerr(false),hasputcen(false),ooffset(0) {}
|
|
~TZip() {}
|
|
|
|
// These variables say about the file we're writing into
|
|
// We can write to pipe, file-by-handle, file-by-name, memory-to-memmapfile
|
|
HANDLE hfout; // if valid, we'll write here (for files or pipes)
|
|
HANDLE hmapout; // otherwise, we'll write here (for memmap)
|
|
unsigned ooffset; // for hfout, this is where the pointer was initially
|
|
ZRESULT oerr; // did a write operation give rise to an error?
|
|
unsigned writ; // how far have we written. This is maintained by Add, not write(), to avoid confusion over seeks
|
|
bool ocanseek; // can we seek?
|
|
char *obuf; // this is where we've locked mmap to view.
|
|
unsigned int opos; // current pos in the mmap
|
|
unsigned int mapsize; // the size of the map we created
|
|
bool hasputcen; // have we yet placed the central directory?
|
|
//
|
|
TZipFileInfo *zfis; // each file gets added onto this list, for writing the table at the end
|
|
|
|
ZRESULT Create(void *z,unsigned int len,DWORD flags);
|
|
static unsigned sflush(void *param,const char *buf, unsigned *size);
|
|
static unsigned swrite(void *param,const char *buf, unsigned size);
|
|
unsigned int write(const char *buf,unsigned int size);
|
|
bool oseek(unsigned int pos);
|
|
ZRESULT GetMemory(void **pbuf, unsigned long *plen);
|
|
ZRESULT Close();
|
|
|
|
// some variables to do with the file currently being read:
|
|
// I haven't done it object-orientedly here, just put them all
|
|
// together, since OO didn't seem to make the design any clearer.
|
|
ulg attr; iztimes times; ulg timestamp; // all open_* methods set these
|
|
bool iseekable; long isize,ired; // size is not set until close() on pips
|
|
ulg crc; // crc is not set until close(). iwrit is cumulative
|
|
HANDLE hfin; bool selfclosehf; // for input files and pipes
|
|
const char *bufin; unsigned int lenin,posin; // for memory
|
|
// and a variable for what we've done with the input: (i.e. compressed it!)
|
|
ulg csize; // compressed size, set by the compression routines
|
|
// and this is used by some of the compression routines
|
|
char buf[16384];
|
|
|
|
|
|
ZRESULT open_file(const TCHAR *fn);
|
|
ZRESULT open_handle(HANDLE hf,unsigned int len);
|
|
ZRESULT open_mem(void *src,unsigned int len);
|
|
ZRESULT open_dir();
|
|
static unsigned sread(TState &s,char *buf,unsigned size);
|
|
unsigned read(char *buf, unsigned size);
|
|
ZRESULT iclose();
|
|
|
|
ZRESULT ideflate(TZipFileInfo *zfi);
|
|
ZRESULT istore();
|
|
|
|
ZRESULT Add(const char *odstzn, void *src,unsigned int len, DWORD flags);
|
|
ZRESULT AddCentral();
|
|
|
|
};
|
|
|
|
ZRESULT TZip::Create(void *z,unsigned int len,DWORD flags)
|
|
{
|
|
if (hfout!=0 || hmapout!=0 || obuf!=0 || writ!=0 || oerr!=ZR_OK || hasputcen)
|
|
return ZR_NOTINITED;
|
|
//
|
|
if (flags==ZIP_MEMORY)
|
|
{
|
|
if (len==0)
|
|
return ZR_MEMSIZE;
|
|
if (z!=0)
|
|
obuf=(char*)z;
|
|
else
|
|
{
|
|
#ifdef _WIN32
|
|
hmapout = CreateFileMapping(INVALID_HANDLE_VALUE,NULL,PAGE_READWRITE,0,len,NULL);
|
|
if (hmapout==NULL)
|
|
return ZR_NOALLOC;
|
|
obuf = (char*)MapViewOfFile(hmapout,FILE_MAP_ALL_ACCESS,0,0,len);
|
|
if (obuf==0)
|
|
{
|
|
CloseHandle(hmapout);
|
|
hmapout=0;
|
|
return ZR_NOALLOC;
|
|
}
|
|
#endif
|
|
#ifdef POSIX
|
|
obuf = (char*) calloc( len, 1 );
|
|
hmapout = (void*)-1; // sentinel to let close know it's a file in posix.
|
|
if ( !obuf )
|
|
return ZR_NOALLOC;
|
|
#endif
|
|
}
|
|
ocanseek=true;
|
|
opos=0;
|
|
mapsize=len;
|
|
return ZR_OK;
|
|
}
|
|
#ifdef _WIN32
|
|
else if (flags==ZIP_HANDLE)
|
|
{
|
|
HANDLE hf = (HANDLE)z;
|
|
BOOL res = DuplicateHandle(GetCurrentProcess(),hf,GetCurrentProcess(),&hfout,0,FALSE,DUPLICATE_SAME_ACCESS);
|
|
if (!res)
|
|
return ZR_NODUPH;
|
|
// now we have our own hfout, which we must close. And the caller will close hf
|
|
DWORD type = GetFileType(hfout);
|
|
ocanseek = (type==FILE_TYPE_DISK);
|
|
if (type==FILE_TYPE_DISK)
|
|
ooffset=SetFilePointer(hfout,0,NULL,FILE_CURRENT);
|
|
else
|
|
ooffset=0;
|
|
return ZR_OK;
|
|
}
|
|
else if (flags==ZIP_FILENAME)
|
|
{
|
|
#ifdef _UNICODE
|
|
const TCHAR *fn = (const TCHAR*)z;
|
|
hfout = CreateFileW(fn,GENERIC_WRITE,0,NULL,CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);
|
|
#else
|
|
const char *fn = (const char*)z;
|
|
hfout = CreateFileA(fn,GENERIC_WRITE,0,NULL,CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);
|
|
#endif
|
|
|
|
if (hfout==INVALID_HANDLE_VALUE)
|
|
{
|
|
hfout=0;
|
|
return ZR_NOFILE;
|
|
}
|
|
ocanseek=true;
|
|
ooffset=0;
|
|
return ZR_OK;
|
|
}
|
|
#endif
|
|
else
|
|
return ZR_ARGS;
|
|
}
|
|
|
|
|
|
unsigned TZip::sflush(void *param,const char *buf, unsigned *size)
|
|
{ // static
|
|
if (*size==0) return 0;
|
|
TZip *zip = (TZip*)param;
|
|
unsigned int writ = zip->write(buf,*size);
|
|
if (writ!=0) *size=0;
|
|
return writ;
|
|
}
|
|
unsigned TZip::swrite(void *param,const char *buf, unsigned size)
|
|
{ // static
|
|
if (size==0) return 0;
|
|
TZip *zip=(TZip*)param; return zip->write(buf,size);
|
|
}
|
|
unsigned int TZip::write(const char *pBuf,unsigned int size)
|
|
{ if (obuf!=0)
|
|
{ if (opos+size>=mapsize) {oerr=ZR_MEMSIZE; return 0;}
|
|
memcpy(obuf+opos, pBuf, size);
|
|
opos+=size;
|
|
return size;
|
|
}
|
|
#ifdef _WIN32
|
|
else if (hfout!=0)
|
|
{ DWORD writF; WriteFile(hfout, pBuf,size,&writF,NULL);
|
|
return writF;
|
|
}
|
|
#endif
|
|
oerr=ZR_NOTINITED; return 0;
|
|
}
|
|
|
|
bool TZip::oseek(unsigned int pos)
|
|
{ if (!ocanseek) {oerr=ZR_SEEK; return false;}
|
|
if (obuf!=0)
|
|
{ if (pos>=mapsize) {oerr=ZR_MEMSIZE; return false;}
|
|
opos=pos;
|
|
return true;
|
|
}
|
|
#ifdef _WIN32
|
|
else if (hfout!=0)
|
|
{ SetFilePointer(hfout,pos+ooffset,NULL,FILE_BEGIN);
|
|
return true;
|
|
}
|
|
#endif
|
|
oerr=ZR_NOTINITED; return 0;
|
|
}
|
|
|
|
ZRESULT TZip::GetMemory(void **pbuf, unsigned long *plen)
|
|
{ // When the user calls GetMemory, they're presumably at the end
|
|
// of all their adding. In any case, we have to add the central
|
|
// directory now, otherwise the memory we tell them won't be complete.
|
|
if (!hasputcen) AddCentral(); hasputcen=true;
|
|
if (pbuf!=NULL) *pbuf=(void*)obuf;
|
|
if (plen!=NULL) *plen=writ;
|
|
if (obuf==NULL) return ZR_NOTMMAP;
|
|
return ZR_OK;
|
|
}
|
|
|
|
ZRESULT TZip::Close()
|
|
{ // if the directory hadn't already been added through a call to GetMemory,
|
|
// then we do it now
|
|
ZRESULT res=ZR_OK; if (!hasputcen) res=AddCentral(); hasputcen=true;
|
|
if (obuf!=0 && hmapout!=0)
|
|
#ifdef _WIN32
|
|
UnmapViewOfFile(obuf);
|
|
#elif defined( POSIX )
|
|
free(obuf);
|
|
#endif
|
|
obuf=0;
|
|
#ifdef _WIN32
|
|
if (hmapout!=0) CloseHandle(hmapout); hmapout=0;
|
|
if (hfout!=0) CloseHandle(hfout); hfout=0;
|
|
#endif
|
|
return res;
|
|
}
|
|
|
|
|
|
|
|
|
|
ZRESULT TZip::open_file(const TCHAR *fn)
|
|
{ hfin=0; bufin=0; selfclosehf=false; crc=CRCVAL_INITIAL; isize=0; csize=0; ired=0;
|
|
if (fn==0) return ZR_ARGS;
|
|
HANDLE hf = INVALID_HANDLE_VALUE;
|
|
#ifdef _WIN32
|
|
hf = CreateFile(fn,GENERIC_READ,FILE_SHARE_READ,NULL,OPEN_EXISTING,0,NULL);
|
|
#endif
|
|
if (hf==INVALID_HANDLE_VALUE) return ZR_NOFILE;
|
|
ZRESULT res = open_handle(hf,0);
|
|
if (res!=ZR_OK) {
|
|
#ifdef _WIN32
|
|
CloseHandle(hf);
|
|
#endif
|
|
return res;
|
|
}
|
|
selfclosehf=true;
|
|
return ZR_OK;
|
|
}
|
|
ZRESULT TZip::open_handle(HANDLE hf,unsigned int len)
|
|
{ hfin=0; bufin=0; selfclosehf=false; crc=CRCVAL_INITIAL; isize=0; csize=0; ired=0;
|
|
if (hf==0 || hf==INVALID_HANDLE_VALUE) return ZR_ARGS;
|
|
#ifdef _WIN32
|
|
DWORD type = GetFileType(hf);
|
|
if (type==FILE_TYPE_DISK)
|
|
{ ZRESULT res = GetFileInfo(hf,&attr,&isize,×,×tamp);
|
|
if (res!=ZR_OK) return res;
|
|
SetFilePointer(hf,0,NULL,FILE_BEGIN); // because GetFileInfo will have screwed it up
|
|
iseekable=true; hfin=hf;
|
|
return ZR_OK;
|
|
}
|
|
else
|
|
{ attr= 0x80000000; // just a normal file
|
|
isize = -1; // can't know size until at the end
|
|
if (len!=0) isize=len; // unless we were told explicitly!
|
|
iseekable=false;
|
|
SYSTEMTIME st; GetLocalTime(&st);
|
|
FILETIME ft; SystemTimeToFileTime(&st,&ft);
|
|
WORD dosdate,dostime; FileTimeToDosDateTime(&ft,&dosdate,&dostime);
|
|
times.atime = filetime2timet(ft);
|
|
times.mtime = times.atime;
|
|
times.ctime = times.atime;
|
|
timestamp = (WORD)dostime | (((DWORD)dosdate)<<16);
|
|
hfin=hf;
|
|
return ZR_OK;
|
|
}
|
|
#else
|
|
return ZR_FAILED;
|
|
#endif
|
|
}
|
|
|
|
ZRESULT TZip::open_mem(void *src,unsigned int len)
|
|
{ hfin=0; bufin=(const char*)src; selfclosehf=false; crc=CRCVAL_INITIAL; ired=0; csize=0; ired=0;
|
|
lenin=len; posin=0;
|
|
if (src==0 || len==0) return ZR_ARGS;
|
|
#ifdef _WIN32
|
|
attr= 0x80000000; // just a normal file
|
|
isize = len;
|
|
iseekable=true;
|
|
SYSTEMTIME st; GetLocalTime(&st);
|
|
FILETIME ft; SystemTimeToFileTime(&st,&ft);
|
|
WORD dosdate,dostime; FileTimeToDosDateTime(&ft,&dosdate,&dostime);
|
|
times.atime = filetime2timet(ft);
|
|
times.mtime = times.atime;
|
|
times.ctime = times.atime;
|
|
timestamp = (WORD)dostime | (((DWORD)dosdate)<<16);
|
|
return ZR_OK;
|
|
#else
|
|
times.atime = time(NULL);
|
|
times.mtime = times.atime;
|
|
times.ctime = times.atime;
|
|
timestamp = timet_to_timestamp( times.atime );
|
|
return ZR_OK;
|
|
#endif
|
|
}
|
|
|
|
ZRESULT TZip::open_dir()
|
|
{ hfin=0; bufin=0; selfclosehf=false; crc=CRCVAL_INITIAL; isize=0; csize=0; ired=0;
|
|
#ifdef _WIN32
|
|
attr= 0x41C00010; // a readable writable directory, and again directory
|
|
isize = 0;
|
|
iseekable=false;
|
|
SYSTEMTIME st; GetLocalTime(&st);
|
|
FILETIME ft; SystemTimeToFileTime(&st,&ft);
|
|
WORD dosdate,dostime; FileTimeToDosDateTime(&ft,&dosdate,&dostime);
|
|
times.atime = filetime2timet(ft);
|
|
times.mtime = times.atime;
|
|
times.ctime = times.atime;
|
|
timestamp = (WORD)dostime | (((DWORD)dosdate)<<16);
|
|
return ZR_OK;
|
|
#else
|
|
times.atime = time(NULL);
|
|
times.mtime = times.atime;
|
|
times.ctime = times.atime;
|
|
timestamp = timet_to_timestamp( times.atime );
|
|
return ZR_OK;
|
|
#endif
|
|
}
|
|
|
|
unsigned TZip::sread(TState &s,char *buf,unsigned size)
|
|
{ // static
|
|
TZip *zip = (TZip*)s.param;
|
|
return zip->read(buf,size);
|
|
}
|
|
|
|
unsigned TZip::read(char *pBuf, unsigned size)
|
|
{ if (bufin!=0)
|
|
{ if (posin>=lenin) return 0; // end of input
|
|
ulg red = lenin-posin;
|
|
if (red>size) red=size;
|
|
memcpy( pBuf, bufin+posin, red);
|
|
posin += red;
|
|
ired += red;
|
|
crc = crc32(crc, (uch*)pBuf, red);
|
|
return red;
|
|
}
|
|
#ifdef _WIN32
|
|
else if (hfin!=0)
|
|
{ DWORD red;
|
|
BOOL ok = ReadFile(hfin, pBuf,size,&red,NULL);
|
|
if (!ok) return 0;
|
|
ired += red;
|
|
crc = crc32(crc, (uch*)pBuf, red);
|
|
return red;
|
|
}
|
|
#endif
|
|
else {oerr=ZR_NOTINITED; return 0;}
|
|
}
|
|
|
|
ZRESULT TZip::iclose()
|
|
{
|
|
#ifdef _WIN32
|
|
if (selfclosehf && hfin!=0) CloseHandle(hfin);
|
|
#endif
|
|
hfin=0;
|
|
bool mismatch = (isize!=-1 && isize!=ired);
|
|
isize=ired; // and crc has been being updated anyway
|
|
if (mismatch) return ZR_MISSIZE;
|
|
else return ZR_OK;
|
|
}
|
|
|
|
|
|
|
|
ZRESULT TZip::ideflate(TZipFileInfo *zfi)
|
|
{ TState state;
|
|
state.readfunc=sread; state.flush_outbuf=sflush;
|
|
state.param=this; state.level=8; state.seekable=iseekable; state.err=NULL;
|
|
// the following line will make ct_init realise it has to perform the init
|
|
state.ts.static_dtree[0].dl.len = 0;
|
|
// It would be nicer if I could figure out precisely which data had to
|
|
// be initted each time, and which didn't, but that's kind of difficult.
|
|
// Maybe for the next version...
|
|
//
|
|
bi_init(state,buf, sizeof(buf), TRUE); // it used to be just 1024-size, not 16384 as here
|
|
ct_init(state,&zfi->att);
|
|
lm_init(state,state.level, &zfi->flg);
|
|
ulg sz = deflate(state);
|
|
csize=sz;
|
|
if (state.err!=NULL) return ZR_FLATE;
|
|
else return ZR_OK;
|
|
}
|
|
|
|
ZRESULT TZip::istore()
|
|
{ ulg size=0;
|
|
for (;;)
|
|
{ unsigned int cin=read(buf,16384); if (cin<=0 || cin==(unsigned int)EOF) break;
|
|
unsigned int cout = write(buf,cin); if (cout!=cin) return ZR_MISSIZE;
|
|
size += cin;
|
|
}
|
|
csize=size;
|
|
return ZR_OK;
|
|
}
|
|
|
|
|
|
|
|
|
|
ZRESULT TZip::Add(const char *odstzn, void *src,unsigned int len, DWORD flags)
|
|
{
|
|
if (oerr)
|
|
return ZR_FAILED;
|
|
if (hasputcen)
|
|
return ZR_ENDED;
|
|
|
|
// zip has its own notion of what its names should look like: i.e. dir/file.stuff
|
|
char dstzn[MAX_PATH];
|
|
strcpy(dstzn, odstzn);
|
|
if (*dstzn == 0)
|
|
return ZR_ARGS;
|
|
char *d=dstzn;
|
|
while (*d != 0)
|
|
{
|
|
if (*d == '\\')
|
|
*d = '/';
|
|
d++;
|
|
}
|
|
bool isdir = (flags==ZIP_FOLDER);
|
|
bool needs_trailing_slash = (isdir && dstzn[strlen(dstzn)-1]!='/');
|
|
int method=DEFLATE;
|
|
if (isdir || HasZipSuffix(dstzn))
|
|
method=STORE;
|
|
|
|
// now open whatever was our input source:
|
|
ZRESULT openres;
|
|
if (flags==ZIP_FILENAME)
|
|
openres=open_file((const TCHAR*)src);
|
|
else if (flags==ZIP_HANDLE)
|
|
openres=open_handle((HANDLE)src,len);
|
|
else if (flags==ZIP_MEMORY)
|
|
openres=open_mem(src,len);
|
|
else if (flags==ZIP_FOLDER)
|
|
openres=open_dir();
|
|
else return ZR_ARGS;
|
|
if (openres!=ZR_OK)
|
|
return openres;
|
|
|
|
// A zip "entry" consists of a local header (which includes the file name),
|
|
// then the compressed data, and possibly an extended local header.
|
|
|
|
// Initialize the local header
|
|
TZipFileInfo zfi; zfi.nxt=NULL;
|
|
strcpy(zfi.name,"");
|
|
strcpy(zfi.iname,dstzn);
|
|
zfi.nam=strlen(zfi.iname);
|
|
if (needs_trailing_slash)
|
|
{
|
|
strcat(zfi.iname,"/");
|
|
zfi.nam++;
|
|
}
|
|
strcpy(zfi.zname,"");
|
|
zfi.extra=NULL; zfi.ext=0; // extra header to go after this compressed data, and its length
|
|
zfi.cextra=NULL; zfi.cext=0; // extra header to go in the central end-of-zip directory, and its length
|
|
zfi.comment=NULL; zfi.com=0; // comment, and its length
|
|
zfi.mark = 1;
|
|
zfi.dosflag = 0;
|
|
zfi.att = (ush)BINARY;
|
|
zfi.vem = (ush)0xB17; // 0xB00 is win32 os-code. 0x17 is 23 in decimal: zip 2.3
|
|
zfi.ver = (ush)20; // Needs PKUNZIP 2.0 to unzip it
|
|
zfi.tim = timestamp;
|
|
// Even though we write the header now, it will have to be rewritten, since we don't know compressed size or crc.
|
|
zfi.crc = 0; // to be updated later
|
|
zfi.flg = 8; // 8 means 'there is an extra header'. Assume for the moment that we need it.
|
|
zfi.lflg = zfi.flg; // to be updated later
|
|
zfi.how = (ush)method; // to be updated later
|
|
zfi.siz = (ulg)(method==STORE && isize>=0 ? isize : 0); // to be updated later
|
|
zfi.len = (ulg)(isize); // to be updated later
|
|
zfi.dsk = 0;
|
|
zfi.atx = attr;
|
|
zfi.off = writ+ooffset; // offset within file of the start of this local record
|
|
// stuff the 'times' structure into zfi.extra
|
|
char xloc[EB_L_UT_SIZE];
|
|
zfi.extra=xloc;
|
|
zfi.ext=EB_L_UT_SIZE;
|
|
char xcen[EB_C_UT_SIZE];
|
|
zfi.cextra=xcen;
|
|
zfi.cext=EB_C_UT_SIZE;
|
|
xloc[0] = 'U';
|
|
xloc[1] = 'T';
|
|
xloc[2] = EB_UT_LEN(3); // length of data part of e.f.
|
|
xloc[3] = 0;
|
|
xloc[4] = EB_UT_FL_MTIME | EB_UT_FL_ATIME | EB_UT_FL_CTIME;
|
|
xloc[5] = (char)(times.mtime);
|
|
xloc[6] = (char)(times.mtime >> 8);
|
|
xloc[7] = (char)(times.mtime >> 16);
|
|
xloc[8] = (char)(times.mtime >> 24);
|
|
xloc[9] = (char)(times.atime);
|
|
xloc[10] = (char)(times.atime >> 8);
|
|
xloc[11] = (char)(times.atime >> 16);
|
|
xloc[12] = (char)(times.atime >> 24);
|
|
xloc[13] = (char)(times.ctime);
|
|
xloc[14] = (char)(times.ctime >> 8);
|
|
xloc[15] = (char)(times.ctime >> 16);
|
|
xloc[16] = (char)(times.ctime >> 24);
|
|
memcpy(zfi.cextra,zfi.extra,EB_C_UT_SIZE);
|
|
zfi.cextra[EB_LEN] = EB_UT_LEN(1);
|
|
|
|
|
|
// (1) Start by writing the local header:
|
|
int r = putlocal(&zfi,swrite,this);
|
|
if (r!=ZE_OK)
|
|
{
|
|
iclose();
|
|
return ZR_WRITE;
|
|
}
|
|
writ += 4 + LOCHEAD + (unsigned int)zfi.nam + (unsigned int)zfi.ext;
|
|
if (oerr!=ZR_OK)
|
|
{
|
|
iclose();
|
|
return oerr;
|
|
}
|
|
|
|
//(2) Write deflated/stored file to zip file
|
|
ZRESULT writeres=ZR_OK;
|
|
if (!isdir && method==DEFLATE)
|
|
writeres=ideflate(&zfi);
|
|
else if (!isdir && method==STORE)
|
|
writeres=istore();
|
|
else if (isdir)
|
|
csize=0;
|
|
iclose();
|
|
writ += csize;
|
|
if (oerr!=ZR_OK)
|
|
return oerr;
|
|
if (writeres!=ZR_OK)
|
|
return ZR_WRITE;
|
|
|
|
// (3) Either rewrite the local header with correct information...
|
|
bool first_header_has_size_right = (zfi.siz==csize);
|
|
zfi.crc = crc;
|
|
zfi.siz = csize;
|
|
zfi.len = isize;
|
|
if (ocanseek)
|
|
{
|
|
zfi.how = (ush)method;
|
|
if ((zfi.flg & 1) == 0)
|
|
zfi.flg &= ~8; // clear the extended local header flag
|
|
zfi.lflg = zfi.flg;
|
|
// rewrite the local header:
|
|
if (!oseek(zfi.off-ooffset))
|
|
return ZR_SEEK;
|
|
if ((r = putlocal(&zfi, swrite,this)) != ZE_OK)
|
|
return ZR_WRITE;
|
|
if (!oseek(writ))
|
|
return ZR_SEEK;
|
|
}
|
|
else
|
|
{
|
|
// (4) ... or put an updated header at the end
|
|
if (zfi.how != (ush) method)
|
|
return ZR_NOCHANGE;
|
|
if (method==STORE && !first_header_has_size_right)
|
|
return ZR_NOCHANGE;
|
|
if ((r = putextended(&zfi, swrite,this)) != ZE_OK)
|
|
return ZR_WRITE;
|
|
writ += 16L;
|
|
zfi.flg = zfi.lflg; // if flg modified by inflate, for the central index
|
|
}
|
|
if (oerr!=ZR_OK)
|
|
return oerr;
|
|
|
|
// Keep a copy of the zipfileinfo, for our end-of-zip directory
|
|
char *cextra = new char[zfi.cext];
|
|
memcpy(cextra,zfi.cextra,zfi.cext); zfi.cextra=cextra;
|
|
TZipFileInfo *pzfi = new TZipFileInfo;
|
|
memcpy(pzfi,&zfi,sizeof(zfi));
|
|
if (zfis==NULL)
|
|
zfis=pzfi;
|
|
else
|
|
{
|
|
TZipFileInfo *z=zfis;
|
|
while (z->nxt!=NULL)
|
|
z=z->nxt;
|
|
z->nxt=pzfi;
|
|
}
|
|
return ZR_OK;
|
|
}
|
|
|
|
ZRESULT TZip::AddCentral()
|
|
{ // write central directory
|
|
int numentries = 0;
|
|
ulg pos_at_start_of_central = writ;
|
|
//ulg tot_unc_size=0, tot_compressed_size=0;
|
|
bool okay=true;
|
|
for (TZipFileInfo *zfi=zfis; zfi!=NULL; )
|
|
{ if (okay)
|
|
{ int res = putcentral(zfi, swrite,this);
|
|
if (res!=ZE_OK) okay=false;
|
|
}
|
|
writ += 4 + CENHEAD + (unsigned int)zfi->nam + (unsigned int)zfi->cext + (unsigned int)zfi->com;
|
|
//tot_unc_size += zfi->len;
|
|
//tot_compressed_size += zfi->siz;
|
|
numentries++;
|
|
//
|
|
TZipFileInfo *zfinext = zfi->nxt;
|
|
if (zfi->cextra!=0) delete[] zfi->cextra;
|
|
delete zfi;
|
|
zfi = zfinext;
|
|
}
|
|
ulg center_size = writ - pos_at_start_of_central;
|
|
if (okay)
|
|
{ int res = putend(numentries, center_size, pos_at_start_of_central+ooffset, 0, NULL, swrite,this);
|
|
if (res!=ZE_OK) okay=false;
|
|
writ += 4 + ENDHEAD + 0;
|
|
}
|
|
if (!okay) return ZR_WRITE;
|
|
return ZR_OK;
|
|
}
|
|
|
|
|
|
unsigned int FormatZipMessageZ(ZRESULT code, char *buf,unsigned int len)
|
|
{ if (code==ZR_RECENT) code=lasterrorZ;
|
|
const char *msg="unknown zip result code";
|
|
switch (code)
|
|
{ case ZR_OK: msg="Success"; break;
|
|
case ZR_NODUPH: msg="Culdn't duplicate handle"; break;
|
|
case ZR_NOFILE: msg="Couldn't create/open file"; break;
|
|
case ZR_NOALLOC: msg="Failed to allocate memory"; break;
|
|
case ZR_WRITE: msg="Error writing to file"; break;
|
|
case ZR_NOTFOUND: msg="File not found in the zipfile"; break;
|
|
case ZR_MORE: msg="Still more data to unzip"; break;
|
|
case ZR_CORRUPT: msg="Zipfile is corrupt or not a zipfile"; break;
|
|
case ZR_READ: msg="Error reading file"; break;
|
|
case ZR_ARGS: msg="Caller: faulty arguments"; break;
|
|
case ZR_PARTIALUNZ: msg="Caller: the file had already been partially unzipped"; break;
|
|
case ZR_NOTMMAP: msg="Caller: can only get memory of a memory zipfile"; break;
|
|
case ZR_MEMSIZE: msg="Caller: not enough space allocated for memory zipfile"; break;
|
|
case ZR_FAILED: msg="Caller: there was a previous error"; break;
|
|
case ZR_ENDED: msg="Caller: additions to the zip have already been ended"; break;
|
|
case ZR_ZMODE: msg="Caller: mixing creation and opening of zip"; break;
|
|
case ZR_NOTINITED: msg="Zip-bug: internal initialisation not completed"; break;
|
|
case ZR_SEEK: msg="Zip-bug: trying to seek the unseekable"; break;
|
|
case ZR_MISSIZE: msg="Zip-bug: the anticipated size turned out wrong"; break;
|
|
case ZR_NOCHANGE: msg="Zip-bug: tried to change mind, but not allowed"; break;
|
|
case ZR_FLATE: msg="Zip-bug: an internal error during flation"; break;
|
|
}
|
|
unsigned int mlen=(unsigned int)strlen(msg);
|
|
if (buf==0 || len==0) return mlen;
|
|
unsigned int n=mlen; if (n+1>len) n=len-1;
|
|
memcpy(buf,msg,n); buf[n]=0;
|
|
return mlen;
|
|
}
|
|
|
|
|
|
|
|
typedef struct
|
|
{ DWORD flag;
|
|
TZip *zip;
|
|
} TZipHandleData;
|
|
|
|
|
|
HZIP CreateZipZ(void *z,unsigned int len,DWORD flags)
|
|
{
|
|
_tzset();
|
|
TZip *zip = new TZip();
|
|
lasterrorZ = zip->Create(z,len,flags);
|
|
if (lasterrorZ != ZR_OK)
|
|
{
|
|
delete zip;
|
|
return 0;
|
|
}
|
|
TZipHandleData *han = new TZipHandleData;
|
|
han->flag = 2;
|
|
han->zip = zip;
|
|
return (HZIP)han;
|
|
}
|
|
|
|
ZRESULT ZipAdd(HZIP hz, const TCHAR *dstzn, void *src, unsigned int len, DWORD flags)
|
|
{
|
|
if (hz == 0)
|
|
{
|
|
lasterrorZ = ZR_ARGS;
|
|
return ZR_ARGS;
|
|
}
|
|
TZipHandleData *han = (TZipHandleData*)hz;
|
|
if (han->flag != 2)
|
|
{
|
|
lasterrorZ = ZR_ZMODE;
|
|
return ZR_ZMODE;
|
|
}
|
|
TZip *zip = han->zip;
|
|
|
|
|
|
if (flags == ZIP_FILENAME)
|
|
{
|
|
char szDest[MAX_PATH*2];
|
|
memset(szDest, 0, sizeof(szDest));
|
|
|
|
#ifdef _UNICODE
|
|
// need to convert Unicode dest to ANSI
|
|
int nActualChars = WideCharToMultiByte(CP_ACP, // code page
|
|
0, // performance and mapping flags
|
|
(LPCWSTR) dstzn, // wide-character string
|
|
-1, // number of chars in string
|
|
szDest, // buffer for new string
|
|
MAX_PATH*2-2, // size of buffer
|
|
NULL, // default for unmappable chars
|
|
NULL); // set when default char used
|
|
if (nActualChars == 0)
|
|
return ZR_ARGS;
|
|
#else
|
|
strcpy(szDest, dstzn);
|
|
#endif
|
|
|
|
lasterrorZ = zip->Add(szDest, src, len, flags);
|
|
}
|
|
else
|
|
{
|
|
lasterrorZ = zip->Add((char *)dstzn, src, len, flags);
|
|
}
|
|
|
|
return lasterrorZ;
|
|
}
|
|
|
|
ZRESULT ZipGetMemory(HZIP hz, void **buf, unsigned long *len)
|
|
{ if (hz==0) {if (buf!=0) *buf=0; if (len!=0) *len=0; lasterrorZ=ZR_ARGS;return ZR_ARGS;}
|
|
TZipHandleData *han = (TZipHandleData*)hz;
|
|
if (han->flag!=2) {lasterrorZ=ZR_ZMODE;return ZR_ZMODE;}
|
|
TZip *zip = han->zip;
|
|
lasterrorZ = zip->GetMemory(buf,len);
|
|
return lasterrorZ;
|
|
}
|
|
|
|
ZRESULT CloseZipZ(HZIP hz)
|
|
{ if (hz==0) {lasterrorZ=ZR_ARGS;return ZR_ARGS;}
|
|
TZipHandleData *han = (TZipHandleData*)hz;
|
|
if (han->flag!=2) {lasterrorZ=ZR_ZMODE;return ZR_ZMODE;}
|
|
TZip *zip = han->zip;
|
|
lasterrorZ = zip->Close();
|
|
delete zip;
|
|
delete han;
|
|
return lasterrorZ;
|
|
}
|
|
|
|
bool IsZipHandleZ(HZIP hz)
|
|
{ if (hz==0) return true;
|
|
TZipHandleData *han = (TZipHandleData*)hz;
|
|
return (han->flag==2);
|
|
}
|
|
|
|
|