css_enhanced_waf/public/dispcoll.cpp
FluorescentCIAAfricanAmerican 3bf9df6b27 1
2020-04-22 12:56:21 -04:00

1994 lines
52 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#include "BuildDisp.h"
#include "DispColl.h"
#include "tier0/dbg.h"
//=============================================================================
const float CDispCollTree::COLLISION_EPSILON = 0.01f;
const float CDispCollTree::ONE_MINUS_COLLISION_EPSILON = 1.0f - COLLISION_EPSILON;
//=============================================================================
//
// Displacement Collision Triangle Functions
//
//-----------------------------------------------------------------------------
// Purpose: initialize the displacement triangles
//-----------------------------------------------------------------------------
void CDispCollTri::Init( void )
{
for( int i = 0; i < 3; i++ )
{
m_Points[i].x = 0.0f; m_Points[i].y = 0.0f; m_Points[i].z = 0.0f;
m_PointNormals[i].x = 0.0f; m_PointNormals[i].y = 0.0f; m_PointNormals[i].z = 0.0f;
}
m_Normal.x = 0.0f; m_Normal.y = 0.0f; m_Normal.z = 0.0f;
m_Distance = 0.0f;
m_ProjAxes[0] = -1;
m_ProjAxes[1] = -1;
m_bIntersect = false;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
inline void CDispCollTri::SetPoint( int index, Vector const &vert )
{
Assert( index >= 0 );
Assert( index < 3 );
m_Points[index].x = vert[0];
m_Points[index].y = vert[1];
m_Points[index].z = vert[2];
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
inline void CDispCollTri::SetPointNormal( int index, Vector const &normal )
{
Assert( index >= 0 );
Assert( index < 3 );
m_PointNormals[index].x = normal[0];
m_PointNormals[index].y = normal[1];
m_PointNormals[index].z = normal[2];
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDispCollTri::CalcPlane( void )
{
//
// calculate the plane normal and distance
//
Vector segment1, segment2, cross;
segment1 = m_Points[1] - m_Points[0];
segment2 = m_Points[2] - m_Points[0];
cross = segment1.Cross( segment2 );
m_Normal = cross;
VectorNormalize(m_Normal);
m_Distance = m_Normal.Dot( m_Points[0] );
//
// calculate the projection axes
//
if( FloatMakePositive( m_Normal[0] ) > FloatMakePositive( m_Normal[1] ) )
{
if( FloatMakePositive( m_Normal[0] ) > FloatMakePositive( m_Normal[2] ) )
{
m_ProjAxes[0] = 1;
m_ProjAxes[1] = 2;
}
else
{
m_ProjAxes[0] = 0;
m_ProjAxes[1] = 1;
}
}
else
{
if( FloatMakePositive( m_Normal[1] ) > FloatMakePositive( m_Normal[2] ) )
{
m_ProjAxes[0] = 0;
m_ProjAxes[1] = 2;
}
else
{
m_ProjAxes[0] = 0;
m_ProjAxes[1] = 1;
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
inline void CDispCollTri::SetIntersect( bool bIntersect )
{
m_bIntersect = bIntersect;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
inline bool CDispCollTri::IsIntersect( void )
{
return m_bIntersect;
}
//=============================================================================
//
// Displacement Collision Node Functions
//
//-----------------------------------------------------------------------------
// Purpose: constructor
//-----------------------------------------------------------------------------
CDispCollNode::CDispCollNode()
{
m_Bounds[0].x = m_Bounds[0].y = m_Bounds[0].z = 99999.9f;
m_Bounds[1].x = m_Bounds[1].y = m_Bounds[1].z = -99999.9f;
m_Tris[0].Init();
m_Tris[1].Init();
m_bIsLeaf = false;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
inline bool CDispCollNode::IsLeaf( void )
{
return m_bIsLeaf;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
inline void CDispCollNode::SetBounds( Vector const &bMin, Vector const &bMax )
{
m_Bounds[0] = bMin;
m_Bounds[1] = bMax;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
inline void CDispCollNode::GetBounds( Vector &bMin, Vector &bMax )
{
bMin = m_Bounds[0];
bMax = m_Bounds[1];
}
//=============================================================================
//
// Displacement Collision Tree Functions
//
//-----------------------------------------------------------------------------
// Purpose: constructor
//-----------------------------------------------------------------------------
CDispCollTree::CDispCollTree()
{
m_Power = 0;
m_NodeCount = 0;
m_pNodes = NULL;
InitAABBData();
}
//-----------------------------------------------------------------------------
// Purpose: deconstructor
//-----------------------------------------------------------------------------
CDispCollTree::~CDispCollTree()
{
FreeNodes();
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDispCollTree::InitAABBData( void )
{
m_AABBNormals[0].x = -1.0f; m_AABBNormals[0].y = 0.0f; m_AABBNormals[0].z = 0.0f;
m_AABBNormals[1].x = 1.0f; m_AABBNormals[1].y = 0.0f; m_AABBNormals[1].z = 0.0f;
m_AABBNormals[2].x = 0.0f; m_AABBNormals[2].y = -1.0f; m_AABBNormals[2].z = 0.0f;
m_AABBNormals[3].x = 0.0f; m_AABBNormals[3].y = 1.0f; m_AABBNormals[3].z = 0.0f;
m_AABBNormals[4].x = 0.0f; m_AABBNormals[4].y = 0.0f; m_AABBNormals[4].z = -1.0f;
m_AABBNormals[5].x = 0.0f; m_AABBNormals[5].y = 0.0f; m_AABBNormals[5].z = 1.0f;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDispCollTree::CalcBounds( CDispCollNode *pNode, int nodeIndex )
{
Vector bounds[2];
bounds[0].Init( 99999.9f, 99999.9f, 99999.9f );
bounds[1].Init( -99999.9f, -99999.9f, -99999.9f );
//
// handle leaves differently -- bounding volume defined by triangles
//
if( pNode->IsLeaf() )
{
for( int i = 0; i < 2; i++ )
{
for( int j = 0; j < 3; j++ )
{
//
// minimum
//
if( bounds[0].x > pNode->m_Tris[i].m_Points[j].x ) { bounds[0].x = pNode->m_Tris[i].m_Points[j].x; }
if( bounds[0].y > pNode->m_Tris[i].m_Points[j].y ) { bounds[0].y = pNode->m_Tris[i].m_Points[j].y; }
if( bounds[0].z > pNode->m_Tris[i].m_Points[j].z ) { bounds[0].z = pNode->m_Tris[i].m_Points[j].z; }
//
// maximum
//
if( bounds[1].x < pNode->m_Tris[i].m_Points[j].x ) { bounds[1].x = pNode->m_Tris[i].m_Points[j].x; }
if( bounds[1].y < pNode->m_Tris[i].m_Points[j].y ) { bounds[1].y = pNode->m_Tris[i].m_Points[j].y; }
if( bounds[1].z < pNode->m_Tris[i].m_Points[j].z ) { bounds[1].z = pNode->m_Tris[i].m_Points[j].z; }
}
}
}
//
// bounding volume defined by maxima and minima of children volumes
//
else
{
for( int i = 0; i < 4; i++ )
{
int childIndex = GetChildNode( nodeIndex, i );
CDispCollNode *pChildNode = &m_pNodes[childIndex];
Vector childBounds[2];
pChildNode->GetBounds( childBounds[0], childBounds[1] );
//
// minimum
//
if( bounds[0].x > childBounds[0].x ) { bounds[0].x = childBounds[0].x; }
if( bounds[0].y > childBounds[0].y ) { bounds[0].y = childBounds[0].y; }
if( bounds[0].z > childBounds[0].z ) { bounds[0].z = childBounds[0].z; }
//
// maximum
//
if( bounds[1].x < childBounds[1].x ) { bounds[1].x = childBounds[1].x; }
if( bounds[1].y < childBounds[1].y ) { bounds[1].y = childBounds[1].y; }
if( bounds[1].z < childBounds[1].z ) { bounds[1].z = childBounds[1].z; }
}
}
pNode->SetBounds( bounds[0], bounds[1] );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDispCollTree::CreateNodes_r( CCoreDispInfo *pDisp, int nodeIndex, int termLevel )
{
int nodeLevel = GetNodeLevel( nodeIndex );
//
// terminating condition -- set node info (leaf or otherwise)
//
if( nodeLevel == termLevel )
{
CDispCollNode *pNode = &m_pNodes[nodeIndex];
CalcBounds( pNode, nodeIndex );
return;
}
//
// recurse into children
//
for( int i = 0; i < 4; i++ )
{
CreateNodes_r( pDisp, GetChildNode( nodeIndex, i ), termLevel );
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDispCollTree::CreateNodes( CCoreDispInfo *pDisp )
{
//
// create all nodes in tree
//
int power = pDisp->GetPower() + 1;
for( int level = power; level > 0; level-- )
{
CreateNodes_r( pDisp, 0 /* rootIndex */, level );
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
int CDispCollTree::GetNodeIndexFromComponents( int x, int y )
{
int index = 0;
// Interleave bits from the x and y values to create the index:
for( int shift = 0; x != 0; shift += 2, x >>= 1 )
{
index |= ( x & 1 ) << shift;
}
for( shift = 1; y != 0; shift += 2, y >>= 1 )
{
index |= ( y & 1 ) << shift;
}
return index;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDispCollTree::InitLeaves( CCoreDispInfo *pDisp )
{
//
// get power and width and displacement surface
//
int power = pDisp->GetPower();
int width = pDisp->GetWidth();
//
// get leaf indices
//
int startIndex = CalcNodeCount( power - 1 );
int endIndex = CalcNodeCount( power );
for( int index = startIndex; index < endIndex; index++ )
{
//
// create triangles at leaves
//
int x = ( index - startIndex ) % ( width - 1 );
int y = ( index - startIndex ) / ( width - 1 );
int nodeIndex = GetNodeIndexFromComponents( x, y );
nodeIndex += startIndex;
Vector vert;
Vector normal;
//
// tri 1
//
pDisp->GetVert( x + ( y * width ), vert );
pDisp->GetNormal( x + ( y * width ), normal );
m_pNodes[nodeIndex].m_Tris[0].SetPoint( 0, vert );
m_pNodes[nodeIndex].m_Tris[0].SetPointNormal( 0, normal );
pDisp->GetVert( x + ( ( y + 1 ) * width ), vert );
pDisp->GetNormal( x + ( ( y + 1 ) * width ), normal );
m_pNodes[nodeIndex].m_Tris[0].SetPoint( 1, vert );
m_pNodes[nodeIndex].m_Tris[0].SetPointNormal( 1, normal );
pDisp->GetVert( ( x + 1 ) + ( y * width ), vert );
pDisp->GetNormal( ( x + 1 ) + ( y * width ), normal );
m_pNodes[nodeIndex].m_Tris[0].SetPoint( 2, vert );
m_pNodes[nodeIndex].m_Tris[0].SetPointNormal( 2, normal );
m_pNodes[nodeIndex].m_Tris[0].CalcPlane();
//
// tri 2
//
pDisp->GetVert( ( x + 1 ) + ( y * width ), vert );
pDisp->GetNormal( ( x + 1 ) + ( y * width ), normal );
m_pNodes[nodeIndex].m_Tris[1].SetPoint( 0, vert );
m_pNodes[nodeIndex].m_Tris[1].SetPointNormal( 0, normal );
pDisp->GetVert( x + ( ( y + 1 ) * width ), vert );
pDisp->GetNormal( x + ( ( y + 1 ) * width ), normal );
m_pNodes[nodeIndex].m_Tris[1].SetPoint( 1, vert );
m_pNodes[nodeIndex].m_Tris[1].SetPointNormal( 1, normal );
pDisp->GetVert( ( x + 1 ) + ( ( y + 1 ) * width ), vert );
pDisp->GetNormal( ( x + 1 ) + ( ( y + 1 ) * width ), normal );
m_pNodes[nodeIndex].m_Tris[1].SetPoint( 2, vert );
m_pNodes[nodeIndex].m_Tris[1].SetPointNormal( 2, normal );
m_pNodes[nodeIndex].m_Tris[1].CalcPlane();
// set node as leaf
m_pNodes[nodeIndex].m_bIsLeaf = true;
}
}
//-----------------------------------------------------------------------------
// Purpose: allocate and initialize the displacement collision tree
// Input: power - size of the displacement surface
// Output: bool - success? (true/false)
//-----------------------------------------------------------------------------
bool CDispCollTree::Create( CCoreDispInfo *pDisp )
{
//
// calculate the number of nodes needed given the size of the displacement
//
m_Power = pDisp->GetPower();
m_NodeCount = CalcNodeCount( m_Power );
//
// allocate tree space
//
if( !AllocNodes( m_NodeCount ) )
return false;
// initialize leaves
InitLeaves( pDisp );
// create tree nodes
CreateNodes( pDisp );
// tree successfully created!
return true;
}
//-----------------------------------------------------------------------------
// Purpose: allocate memory for the displacement collision tree
// Input: nodeCount - number of nodes to allocate
// Output: bool - success? (true/false)
//-----------------------------------------------------------------------------
bool CDispCollTree::AllocNodes( int nodeCount )
{
// sanity check
Assert( nodeCount != 0 );
m_pNodes = new CDispCollNode[nodeCount];
if( !m_pNodes )
return false;
// tree successfully allocated!
return true;
}
//-----------------------------------------------------------------------------
// Purpose: release allocated memory for displacement collision tree
//-----------------------------------------------------------------------------
void CDispCollTree::FreeNodes( void )
{
if( m_pNodes )
{
delete [] m_pNodes;
m_pNodes = NULL;
}
}
//-----------------------------------------------------------------------------
// Purpose: calculate the number of tree nodes given the size of the
// displacement surface
// Input: power - size of the displacement surface
// Output: int - the number of tree nodes
//-----------------------------------------------------------------------------
inline int CDispCollTree::CalcNodeCount( int power )
{
// power range [2...4]
Assert( power > 0 );
Assert( power < 5 );
return ( ( 1 << ( ( power + 1 ) << 1 ) ) / 3 );
}
//-----------------------------------------------------------------------------
// Purpose: get the parent node index given the current node
// Input: nodeIndex - current node index
// Output: int - the index of the parent node
//-----------------------------------------------------------------------------
inline int CDispCollTree::GetParentNode( int nodeIndex )
{
// node range [0...m_NodeCount)
Assert( nodeIndex >= 0 );
Assert( nodeIndex < m_NodeCount );
// ( nodeIndex - 1 ) / 4
return ( ( nodeIndex - 1 ) >> 2 );
}
//-----------------------------------------------------------------------------
// Purpose: get the child node index given the current node index and direction
// of the child (1 of 4)
// Input: nodeIndex - current node index
// direction - direction of the child ( [0...3] - SW, SE, NW, NE )
// Output: int - the index of the child node
//-----------------------------------------------------------------------------
inline int CDispCollTree::GetChildNode( int nodeIndex, int direction )
{
// node range [0...m_NodeCount)
Assert( nodeIndex >= 0 );
Assert( nodeIndex < m_NodeCount );
// ( nodeIndex * 4 ) + ( direction + 1 )
return ( ( nodeIndex << 2 ) + ( direction + 1 ) );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
inline int CDispCollTree::GetNodeLevel( int nodeIndex )
{
// node range [0...m_NodeCount)
Assert( nodeIndex >= 0 );
Assert( nodeIndex < m_NodeCount );
// level = 2^n + 1
if( nodeIndex == 0 ) { return 1; }
if( nodeIndex < 5 ) { return 2; }
if( nodeIndex < 21 ) { return 3; }
if( nodeIndex < 85 ) { return 4; }
if( nodeIndex < 341 ) { return 5; }
return -1;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CDispCollTree::RayTriTest( Vector const &rayStart, Vector const &rayDir, float const rayLength,
CDispCollTri const *pTri, float *fraction )
{
const float DET_EPSILON = 0.001f;
const float DIST_EPSILON = 0.001f;
//
// calculate the edges
//
Vector edge1 = pTri->m_Points[1] - pTri->m_Points[0];
Vector edge2 = pTri->m_Points[2] - pTri->m_Points[0];
// Vector faceNormal = edge1.Cross( edge2 );
// Vector normNormal = faceNormal.Normalize();
//
// calculate the triangle's determinant
//
Vector pVec = rayDir.Cross( edge2 );
float det = pVec.Dot( edge1 );
// if determinant is zero -- ray lies in plane
if( ( det > -DET_EPSILON ) && ( det < DET_EPSILON ) )
return false;
//
// utility calculations - inverse determinant and distance from v0 to ray start
//
double invDet = 1.0f / det;
Vector tVec = rayStart - pTri->m_Points[0];
//
// calculate the U parameter and test bounds
//
double u = pVec.Dot( tVec ) * invDet;
if( ( u < 0.0f ) || ( u > 1.0f ) )
return false;
Vector qVec = tVec.Cross( edge1 );
//
// calculate the V parameter and test bounds
//
double v = qVec.Dot( rayDir ) * invDet;
if( ( v < 0.0f ) || ( ( u + v ) > 1.0f ) )
return false;
// calculate where ray intersects triangle
*fraction = qVec.Dot( edge2 ) * invDet;
*fraction /= rayLength;
if( ( *fraction < DIST_EPSILON ) || ( *fraction > ( 1.0f - DIST_EPSILON ) ) )
return false;
return true;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CDispCollTree::RayTriListTest( CDispCollTreeTempData *pTemp, CDispCollData *pData )
{
// save starting fraction -- to test for collision
float startFraction = pData->m_Fraction;
//
// calculate the ray
//
Vector seg = pData->m_EndPos - pData->m_StartPos;
Vector rayDir = seg;
float rayLength = VectorNormalize( rayDir );
//
// test ray against all triangles in list
//
for( int i = 0; i < pTemp->m_TriListCount; i++ )
{
float fraction = 1.0f;
bool bResult = RayTriTest( pData->m_StartPos, rayDir, rayLength, pTemp->m_ppTriList[i], &fraction );
if( !bResult )
continue;
if( pData->m_bOcclude )
{
return true;
}
if( fraction < pData->m_Fraction )
{
pData->m_Fraction = fraction;
pData->m_Normal = pTemp->m_ppTriList[i]->m_Normal;
pData->m_Distance = pTemp->m_ppTriList[i]->m_Distance;
}
}
// collision!
if( pData->m_Fraction < startFraction )
return true;
// no collision!
return false;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CDispCollTree::RayAABBTest( CDispCollTreeTempData *pTemp, Vector &rayStart, Vector &rayEnd )
{
const float MY_DIST_EPSILON = 0.01f;
for( int i = 0; i < 6; i++ )
{
float dist1 = m_AABBNormals[i].Dot( rayStart ) - pTemp->m_AABBDistances[i];
float dist2 = m_AABBNormals[i].Dot( rayEnd ) - pTemp->m_AABBDistances[i];
//
// entry intersection point - move ray start up to intersection
//
if( ( dist1 > MY_DIST_EPSILON ) && ( dist2 < -MY_DIST_EPSILON ) )
{
float fraction = ( dist1 / ( dist1 - dist2 ) );
Vector segment, increment;
segment = ( rayEnd - rayStart ) * fraction;
increment = segment;
VectorNormalize(increment);
segment += increment;
rayStart += segment;
}
else if( ( dist1 > MY_DIST_EPSILON ) && ( dist2 > MY_DIST_EPSILON ) )
{
return false;
}
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDispCollTree::CreatePlanesFromBounds( CDispCollTreeTempData *pTemp, Vector const &bbMin, Vector const &bbMax )
{
//
// note -- these never change!
//
// m_AABBNormals[0].x = -1;
// m_AABBNormals[1].x = 1;
// m_AABBNormals[2].y = -1;
// m_AABBNormals[3].y = 1;
// m_AABBNormals[4].z = -1;
// m_AABBNormals[5].z = 1;
pTemp->m_AABBDistances[0] = -bbMin.x;
pTemp->m_AABBDistances[1] = bbMax.x;
pTemp->m_AABBDistances[2] = -bbMin.y;
pTemp->m_AABBDistances[3] = bbMax.y;
pTemp->m_AABBDistances[4] = -bbMin.z;
pTemp->m_AABBDistances[5] = bbMax.z;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDispCollTree::RayNodeTest_r( CDispCollTreeTempData *pTemp, int nodeIndex, Vector rayStart, Vector rayEnd )
{
// get the current node
CDispCollNode *pNode = &m_pNodes[nodeIndex];
//
// get node bounding box and create collision planes
//
Vector bounds[2];
pNode->GetBounds( bounds[0], bounds[1] );
CreatePlanesFromBounds( pTemp, bounds[0], bounds[1] );
bool bIntersect = RayAABBTest( pTemp, rayStart, rayEnd );
if( bIntersect )
{
// done -- add triangles to triangle list
if( pNode->IsLeaf() )
{
// Assert for now -- flush cache later!!!!!
Assert( pTemp->m_TriListCount >= 0 );
Assert( pTemp->m_TriListCount < TRILIST_CACHE_SIZE );
pTemp->m_ppTriList[pTemp->m_TriListCount] = &pNode->m_Tris[0];
pTemp->m_ppTriList[pTemp->m_TriListCount+1] = &pNode->m_Tris[1];
pTemp->m_TriListCount += 2;
}
// continue recursion
else
{
for( int i = 0; i < 4; i++ )
{
RayNodeTest_r( pTemp, GetChildNode( nodeIndex, i ), rayStart, rayEnd );
}
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CDispCollTree::RayTestAllTris( CDispCollData *pData, int power )
{
//
// get leaf indices
//
int startIndex = CalcNodeCount( power - 1 );
int endIndex = CalcNodeCount( power );
// save incoming fraction
float startFraction = pData->m_Fraction;
float fraction = pData->m_Fraction;
Vector ray = pData->m_EndPos - pData->m_StartPos;
Vector rayDir = ray;
float rayLength = VectorNormalize(rayDir);
//
// test ray against all triangles in list
//
for( int index = startIndex; index < endIndex; index++ )
{
for( int j = 0; j < 2; j++ )
{
bool bResult = RayTriTest( pData->m_StartPos, rayDir, rayLength, &m_pNodes[index].m_Tris[j], &fraction );
if( !bResult )
continue;
if( pData->m_bOcclude )
{
return true;
}
if( fraction < pData->m_Fraction )
{
pData->m_Fraction = fraction;
pData->m_Normal = m_pNodes[index].m_Tris[j].m_Normal;
pData->m_Distance = m_pNodes[index].m_Tris[j].m_Distance;
}
}
}
// collision!
if( pData->m_Fraction < startFraction )
return true;
// no collision!
return false;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CDispCollTree::RayTest( CDispCollData *pData )
{
// reset the triangle list count
CDispCollTreeTempData tmp;
tmp.m_TriListCount = 0;
// trace against nodes (copy start, end because they change)
RayNodeTest_r( &tmp, 0, pData->m_StartPos, pData->m_EndPos );
//
// trace against tris (if need be)
//
if( tmp.m_TriListCount != 0 )
{
bool result = RayTriListTest( &tmp, pData );
return result;
}
return false;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CDispCollTree::SweptAABBTriIntersect( Vector &rayStart, Vector &rayEnd, Vector &extents,
CDispCollTri const *pTri, Vector &plNormal, float *plDist,
float *fraction )
{
//
// PUT A COPY HERE OF START AND END -- SINCE I CHANGE THEM!!!!!!
//
int dir, ptIndex;
float closeValue;
float distStart, distEnd;
float t;
Vector rayPt;
// get ray direction
Vector rayDir = rayEnd - rayStart;
// initialize fraction
*fraction = 1.0f;
//
// test for collision with axial planes (x, y, z)
//
for( dir = 0; dir < 3; dir++ )
{
if( rayDir[dir] < 0.0f )
{
closeValue = -99999.9f;
for( ptIndex = 0; ptIndex < 3; ptIndex++ )
{
if( pTri->m_Points[ptIndex][dir] > closeValue )
{
closeValue = pTri->m_Points[ptIndex][dir];
}
}
closeValue += extents[dir];
distStart = rayStart[dir] - closeValue;
distEnd = rayEnd[dir] - closeValue;
}
else
{
closeValue = 99999.9f;
for( ptIndex = 0; ptIndex < 3; ptIndex++ )
{
if( pTri->m_Points[ptIndex][dir] < closeValue )
{
closeValue = pTri->m_Points[ptIndex][dir];
}
}
closeValue -= extents[dir];
distStart = -( rayStart[dir] - closeValue );
distEnd = -( rayEnd[dir] - closeValue );
}
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
{
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
if( t > *fraction )
{
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayStart );
*fraction = t;
plNormal.Init();
plNormal[dir] = 1.0f;
*plDist = closeValue;
}
}
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayEnd );
}
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
return false;
}
}
//
// check for an early out
//
if( ( pTri->m_Normal[0] > ONE_MINUS_COLLISION_EPSILON ) ||
( pTri->m_Normal[1] > ONE_MINUS_COLLISION_EPSILON ) ||
( pTri->m_Normal[2] > ONE_MINUS_COLLISION_EPSILON ) )
{
if( *fraction == 1.0f )
return false;
return true;
}
//
// handle 9 edge tests
//
Vector normal;
Vector edge;
float dist;
// find the closest box point
Vector boxPt( 0.0f, 0.0f, 0.0f );
for( dir = 0; dir < 3; dir++ )
{
if( rayDir[dir] < 0.0f )
{
boxPt[dir] = extents[dir];
}
else
{
boxPt[dir] = -extents[dir];
}
}
//
// edge 0
//
edge = pTri->m_Points[1] - pTri->m_Points[0];
// cross x-edge
normal.x = 0.0f;
normal.y = -edge.z;
normal.z = edge.y;
// extents adjusted dist
dist = ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) );
// find distances from plane (start, end)
distStart = ( normal.y * rayStart.y ) + ( normal.z * rayStart.z ) - dist;
distEnd = ( normal.y * rayEnd.y ) + ( normal.z * rayEnd.z ) - dist;
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
{
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
if( t > *fraction )
{
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayStart );
*fraction = t;
plNormal = normal;
*plDist = dist;
}
}
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayEnd );
}
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
return false;
}
// cross y-edge
normal.x = edge.z;
normal.y = 0.0f;
normal.z = edge.y;
// extents adjusted dist
dist = ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) );
// find distances from plane (start, end)
distStart = ( normal.x * rayStart.x ) + ( normal.z * rayStart.z ) - dist;
distEnd = ( normal.x * rayEnd.x ) + ( normal.z * rayEnd.z ) - dist;
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
{
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
if( t > *fraction )
{
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayStart );
*fraction = t;
plNormal = normal;
*plDist = dist;
}
}
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayEnd );
}
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
return false;
}
// cross z-edge
normal.x = -edge.y;
normal.y = edge.x;
normal.z = 0.0f;
// extents adjusted dist
dist = ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) );
// find distances from plane (start, end)
distStart = ( normal.x * rayStart.x ) + ( normal.y * rayStart.y ) - dist;
distEnd = ( normal.x * rayEnd.x ) + ( normal.y * rayEnd.y ) - dist;
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
{
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
if( t > *fraction )
{
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayStart );
*fraction = t;
plNormal = normal;
*plDist = dist;
}
}
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayEnd );
}
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
return false;
}
//
// edge 1
//
edge = pTri->m_Points[2] - pTri->m_Points[1];
// cross x-edge
normal.x = 0.0f;
normal.y = -edge.z;
normal.z = edge.y;
// extents adjusted dist
dist = ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) );
// find distances from plane (start, end)
distStart = ( normal.y * rayStart.y ) + ( normal.z * rayStart.z ) - dist;
distEnd = ( normal.y * rayEnd.y ) + ( normal.z * rayEnd.z ) - dist;
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
{
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
if( t > *fraction )
{
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayStart );
*fraction = t;
plNormal = normal;
*plDist = dist;
}
}
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayEnd );
}
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
return false;
}
// cross y-edge
normal.x = edge.z;
normal.y = 0.0f;
normal.z = edge.y;
// extents adjusted dist
dist = ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) );
// find distances from plane (start, end)
distStart = ( normal.x * rayStart.x ) + ( normal.z * rayStart.z ) - dist;
distEnd = ( normal.x * rayEnd.x ) + ( normal.z * rayEnd.z ) - dist;
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
{
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
if( t > *fraction )
{
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayStart );
*fraction = t;
plNormal = normal;
*plDist = dist;
}
}
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayEnd );
}
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
return false;
}
// cross z-edge
normal.x = -edge.y;
normal.y = edge.x;
normal.z = 0.0f;
// extents adjusted dist
dist = ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) );
// find distances from plane (start, end)
distStart = ( normal.x * rayStart.x ) + ( normal.y * rayStart.y ) - dist;
distEnd = ( normal.x * rayEnd.x ) + ( normal.y * rayEnd.y ) - dist;
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
{
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
if( t > *fraction )
{
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayStart );
*fraction = t;
plNormal = normal;
*plDist = dist;
}
}
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayEnd );
}
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
return false;
}
//
// edge 2
//
edge = pTri->m_Points[0] - pTri->m_Points[2];
// cross x-edge
normal.x = 0.0f;
normal.y = -edge.z;
normal.z = edge.y;
// extents adjusted dist
dist = ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) );
// find distances from plane (start, end)
distStart = ( normal.y * rayStart.y ) + ( normal.z * rayStart.z ) - dist;
distEnd = ( normal.y * rayEnd.y ) + ( normal.z * rayEnd.z ) - dist;
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
{
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
if( t > *fraction )
{
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayStart );
*fraction = t;
plNormal = normal;
*plDist = dist;
}
}
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayEnd );
}
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
return false;
}
// cross y-edge
normal.x = edge.z;
normal.y = 0.0f;
normal.z = edge.y;
// extents adjusted dist
dist = ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) );
// find distances from plane (start, end)
distStart = ( normal.x * rayStart.x ) + ( normal.z * rayStart.z ) - dist;
distEnd = ( normal.x * rayEnd.x ) + ( normal.z * rayEnd.z ) - dist;
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
{
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
if( t > *fraction )
{
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayStart );
*fraction = t;
plNormal = normal;
*plDist = dist;
}
}
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayEnd );
}
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
return false;
}
// cross z-edge
normal.x = -edge.y;
normal.y = edge.x;
normal.z = 0.0f;
// extents adjusted dist
dist = ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) );
// find distances from plane (start, end)
distStart = ( normal.x * rayStart.x ) + ( normal.y * rayStart.y ) - dist;
distEnd = ( normal.x * rayEnd.x ) + ( normal.y * rayEnd.y ) - dist;
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
{
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
if( t > *fraction )
{
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayStart );
*fraction = t;
plNormal = normal;
*plDist = dist;
}
}
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayEnd );
}
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
return false;
}
//
// test face plane
//
dist = ( pTri->m_Normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) +
( pTri->m_Normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) +
( pTri->m_Normal.z * ( boxPt.z - pTri->m_Points[0].z ) );
distStart = pTri->m_Normal.Dot( rayStart ) - dist;
distEnd = pTri->m_Normal.Dot( rayEnd ) - dist;
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
{
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
if( t > *fraction )
{
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayStart );
*fraction = t;
plNormal = normal;
*plDist = dist;
}
}
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
VectorScale( rayDir, t, rayPt );
VectorAdd( rayStart, rayPt, rayEnd );
}
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
return false;
}
if( *fraction == 1.0f )
return false;
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CDispCollTree::AABBTriIntersect( CDispCollTreeTempData *pTemp, CDispCollData *pData )
{
bool bResult = false;
Vector normal;
float fraction, dist;
//
// sweep ABB against all triangles in list
//
for( int i = 0; i < pTemp->m_TriListCount; i++ )
{
if( pTemp->m_ppTriList[i]->IsIntersect() )
{
bResult = SweptAABBTriIntersect( pData->m_StartPos, pData->m_EndPos, pData->m_Extents,
pTemp->m_ppTriList[i], normal, &dist, &fraction );
if( bResult )
{
if( fraction < pData->m_Fraction )
{
pData->m_Fraction = fraction;
pData->m_Normal = normal;
pData->m_Distance = dist;
}
}
}
}
return bResult;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CDispCollTree::IntersectAABBTriTest( Vector &rayStart, Vector &extents,
CDispCollTri const *pTri )
{
int dir, ptIndex;
float dist;
//
// test axail planes (x, y, z)
//
for( dir = 0; dir < 3; dir++ )
{
//
// negative axial plane, component = dir
//
dist = rayStart[dir] - extents[dir];
for( ptIndex = 0; ptIndex < 3; ptIndex++ )
{
if( pTri->m_Points[ptIndex][dir] > dist )
break;
}
if( ptIndex == 3 )
return false;
//
// positive axial plane, component = dir
//
dist = rayStart[dir] + extents[dir];
for( ptIndex = 0; ptIndex < 3; ptIndex++ )
{
if( pTri->m_Points[ptIndex][dir] < dist )
break;
}
if( ptIndex == 3 )
return false;
}
//
// add a test here to see if triangle face normal is close to axial -- done if so!!!
//
if( ( pTri->m_Normal[0] > ONE_MINUS_COLLISION_EPSILON ) ||
( pTri->m_Normal[1] > ONE_MINUS_COLLISION_EPSILON ) ||
( pTri->m_Normal[2] > ONE_MINUS_COLLISION_EPSILON ) )
return true;
// find the closest point on the box (use negated tri face noraml)
Vector boxPt( 0.0f, 0.0f, 0.0f );
for( dir = 0; dir < 3; dir++ )
{
if( pTri->m_Normal[dir] < 0.0f )
{
boxPt[dir] = extents[dir];
}
else
{
boxPt[dir] = -extents[dir];
}
}
//
// triangle plane test
//
// do the opposite because the ray has been negated
if( ( ( pTri->m_Normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) +
( pTri->m_Normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) +
( pTri->m_Normal.z * ( boxPt.z - pTri->m_Points[0].z ) ) ) > 0.0f )
return false;
//
// test edge planes - 9 of them
//
Vector normal;
Vector edge;
//
// edge 0
//
edge = pTri->m_Points[1] - pTri->m_Points[0];
// cross x
normal.x = 0.0f;
normal.y = -edge.z;
normal.z = edge.y;
if( ( ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) ) ) > 0.0f )
return false;
// cross y
normal.x = edge.z;
normal.y = 0.0f;
normal.z = edge.y;
if( ( ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) ) ) > 0.0f )
return false;
// cross z
normal.x = -edge.y;
normal.y = edge.x;
normal.z = 0.0f;
if( ( ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) ) > 0.0f )
return false;
//
// edge 1
//
edge = pTri->m_Points[2] - pTri->m_Points[1];
// cross x
normal.x = 0.0f;
normal.y = -edge.z;
normal.z = edge.y;
if( ( ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) ) ) > 0.0f )
return false;
// cross y
normal.x = edge.z;
normal.y = 0.0f;
normal.z = edge.y;
if( ( ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) ) ) > 0.0f )
return false;
// cross z
normal.x = -edge.y;
normal.y = edge.x;
normal.z = 0.0f;
if( ( ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) ) > 0.0f )
return false;
//
// edge 2
//
edge = pTri->m_Points[0] - pTri->m_Points[2];
// cross x
normal.x = 0.0f;
normal.y = -edge.z;
normal.z = edge.y;
if( ( ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) ) ) > 0.0f )
return false;
// cross y
normal.x = edge.z;
normal.y = 0.0f;
normal.z = edge.y;
if( ( ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) ) ) > 0.0f )
return false;
// cross z
normal.x = -edge.y;
normal.y = edge.x;
normal.z = 0.0f;
if( ( ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) ) > 0.0f )
return false;
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CDispCollTree::SweptAABBTriTest( Vector &rayStart, Vector &rayEnd, Vector &extents,
CDispCollTri const *pTri )
{
// get ray direction
Vector rayDir = rayEnd - rayStart;
//
// quick and dirty test -- test to see if the object is traveling away from triangle surface???
//
if( pTri->m_Normal.Dot( rayDir ) > 0.0f )
return false;
//
// calc the swept triangle face (negate the ray -- opposite direction of box travel)
//
rayDir.Negate();
Vector points[3];
points[0] = pTri->m_Points[0] + rayDir;
points[1] = pTri->m_Points[1] + rayDir;
points[2] = pTri->m_Points[2] + rayDir;
//
// handle 4 faces tests (3 axial planes and triangle face)
//
int dir;
float dist;
//
// axial planes tests (x, y, z)
//
for( dir = 0; dir < 3; dir++ )
{
bool bOutside = true;
if( rayDir[dir] < 0.0f )
{
dist = rayStart[dir] - extents[dir];
for( int ptIndex = 0; ptIndex < 3; ptIndex )
{
if( points[ptIndex][dir] > dist )
{
bOutside = false;
break;
}
}
}
else
{
dist = rayStart[dir] + extents[dir];
for( int ptIndex = 0; ptIndex < 3; ptIndex )
{
if( pTri->m_Points[ptIndex][dir] < dist )
{
bOutside = false;
break;
}
}
}
if( bOutside )
return false;
}
//
// add a test here to see if triangle face normal is close to axial -- done if so!!!
//
if( ( pTri->m_Normal[0] > ONE_MINUS_COLLISION_EPSILON ) ||
( pTri->m_Normal[1] > ONE_MINUS_COLLISION_EPSILON ) ||
( pTri->m_Normal[2] > ONE_MINUS_COLLISION_EPSILON ) )
return true;
//
// handle 9 edge tests - always use the newly swept face for this
//
Vector normal;
Vector edge;
// find the closest box point - (is written opposite to normal due to negating ray)
Vector boxPt( 0.0f, 0.0f, 0.0f );
for( dir = 0; dir < 3; dir++ )
{
if( rayDir[dir] < 0.0f )
{
boxPt[dir] = rayStart[dir] - extents[dir];
}
else
{
boxPt[dir] = rayStart[dir] + extents[dir];
}
}
//
// edge 0
//
edge = points[1] - points[0];
// cross x-edge
normal.x = 0.0f;
normal.y = -edge.z;
normal.z = edge.y;
if( ( ( normal.y * ( boxPt.y - points[0].y ) ) + ( normal.z * ( boxPt.z - points[0].z ) ) ) > 0.0f )
return false;
// cross, y-edge
normal.x = edge.z;
normal.y = 0.0f;
normal.z = edge.y;
if( ( ( normal.x * ( boxPt.x - points[0].x ) ) + ( normal.z * ( boxPt.z - points[0].z ) ) ) > 0.0f )
return false;
// cross z-edge
normal.x = -edge.y;
normal.y = edge.x;
normal.z = 0.0f;
if( ( ( normal.x * ( boxPt.x - points[0].x ) ) + ( normal.y * ( boxPt.y - points[0].y ) ) ) > 0.0f )
return false;
//
// edge 1
//
edge = points[2] - points[1];
// cross x-edge
normal.x = 0.0f;
normal.y = -edge.z;
normal.z = edge.y;
if( ( ( normal.y * ( boxPt.y - points[0].y ) ) + ( normal.z * ( boxPt.z - points[0].z ) ) ) > 0.0f )
return false;
// cross, y-edge
normal.x = edge.z;
normal.y = 0.0f;
normal.z = edge.y;
if( ( ( normal.x * ( boxPt.x - points[0].x ) ) + ( normal.z * ( boxPt.z - points[0].z ) ) ) > 0.0f )
return false;
// cross z-edge
normal.x = -edge.y;
normal.y = edge.x;
normal.z = 0.0f;
if( ( ( normal.x * ( boxPt.x - points[0].x ) ) + ( normal.y * ( boxPt.y - points[0].y ) ) ) > 0.0f )
return false;
//
// edge 2
//
edge = points[0] - points[2];
// cross x-edge
normal.x = 0.0f;
normal.y = -edge.z;
normal.z = edge.y;
if( ( ( normal.y * ( boxPt.y - points[0].y ) ) + ( normal.z * ( boxPt.z - points[0].z ) ) ) > 0.0f )
return false;
// cross, y-edge
normal.x = edge.z;
normal.y = 0.0f;
normal.z = edge.y;
if( ( ( normal.x * ( boxPt.x - points[0].x ) ) + ( normal.z * ( boxPt.z - points[0].z ) ) ) > 0.0f )
return false;
// cross z-edge
normal.x = -edge.y;
normal.y = edge.x;
normal.z = 0.0f;
if( ( ( normal.x * ( boxPt.x - points[0].x ) ) + ( normal.y * ( boxPt.y - points[0].y ) ) ) > 0.0f )
return false;
//
// triangle plane test
//
// do the opposite because the ray has been negated
if( ( ( pTri->m_Normal.x * ( boxPt.x - points[0].x ) ) +
( pTri->m_Normal.y * ( boxPt.y - points[0].y ) ) +
( pTri->m_Normal.z * ( boxPt.z - points[0].z ) ) ) > 0.0f )
return false;
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CDispCollTree::CullTriList( CDispCollTreeTempData *pTemp, Vector &rayStart, Vector &rayEnd, Vector &extents, bool bIntersect )
{
//
// intersect AABB with all triangles in list
//
if( bIntersect )
{
for( int i = 0; i < pTemp->m_TriListCount; i++ )
{
if( IntersectAABBTriTest( rayStart, extents, pTemp->m_ppTriList[i] ) )
return true;
}
return false;
}
//
// sweep AABB against all triangles in list
//
else
{
bool bResult = false;
for( int i = 0; i < pTemp->m_TriListCount; i++ )
{
if( SweptAABBTriTest( rayStart, rayEnd, extents, pTemp->m_ppTriList[i] ) )
{
pTemp->m_ppTriList[i]->SetIntersect( true );
bResult = true;
}
}
return bResult;
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CDispCollTree::IntersectAABBAABBTest( CDispCollTreeTempData *pTemp, const Vector &pos, const Vector &extents )
{
float dist;
for( int dir = 0; dir < 3; dir++ )
{
// negative direction
dist = -( pos[dir] - ( pTemp->m_AABBDistances[(dir>>1)] - extents[dir] ) );
if( dist > COLLISION_EPSILON )
return false;
// positive direction
dist = pos[dir] - ( pTemp->m_AABBDistances[(dir>>1)+1] + extents[dir] );
if( dist > COLLISION_EPSILON )
return false;
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CDispCollTree::SweptAABBAABBTest( CDispCollTreeTempData *pTemp, const Vector &rayStart, const Vector &rayEnd, const Vector &extents )
{
int dir;
float distStart, distEnd;
float fraction;
float deltas[3];
float scalers[3];
//
// enter and exit fractions
//
float enterFraction = 0.0f;
float exitFraction = 0.0f;
//
// de-normalize the paramter space so that we don't have to divide
// to find the fractional amount later (clamped for precision)
//
deltas[0] = rayEnd.x - rayStart.x;
deltas[1] = rayEnd.y - rayStart.y;
deltas[2] = rayEnd.z - rayStart.z;
if( ( deltas[0] < COLLISION_EPSILON ) && ( deltas[0] > -COLLISION_EPSILON ) ) { deltas[0] = 1.0f; }
if( ( deltas[1] < COLLISION_EPSILON ) && ( deltas[1] > -COLLISION_EPSILON ) ) { deltas[0] = 1.0f; }
if( ( deltas[2] < COLLISION_EPSILON ) && ( deltas[2] > -COLLISION_EPSILON ) ) { deltas[0] = 1.0f; }
scalers[0] = deltas[1] * deltas[2];
scalers[1] = deltas[0] * deltas[2];
scalers[2] = deltas[0] * deltas[1];
for( dir = 0; dir < 3; dir++ )
{
//
// negative direction
//
distStart = -( rayStart[dir] - ( pTemp->m_AABBDistances[(dir>>1)] - extents[dir] ) );
distEnd = -( rayEnd[dir] - ( pTemp->m_AABBDistances[(dir>>1)] - extents[dir] ) );
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
{
fraction = distStart * scalers[dir];
if( fraction > enterFraction )
{
enterFraction = fraction;
}
}
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
fraction = distStart * scalers[dir];
if( fraction < exitFraction )
{
exitFraction = fraction;
}
}
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
return false;
}
//
// positive direction
//
distStart = rayStart[dir] - ( pTemp->m_AABBDistances[(dir>>1)+1] + extents[dir] );
distEnd = rayEnd[dir] - ( pTemp->m_AABBDistances[(dir>>1)+1] + extents[dir] );
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
{
fraction = distStart * scalers[dir];
if( fraction > enterFraction )
{
enterFraction = fraction;
}
}
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
fraction = distStart * scalers[dir];
if( fraction < exitFraction )
{
exitFraction = fraction;
}
}
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
{
return false;
}
}
if( exitFraction < enterFraction )
return false;
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDispCollTree::BuildTriList_r( CDispCollTreeTempData *pTemp, int nodeIndex, Vector &rayStart, Vector &rayEnd, Vector &extents,
bool bIntersect )
{
//
// get the current nodes bounds and create collision test planes
// (saved in the in class cache m_AABBNormals, m_AABBDistances)
//
Vector bounds[2];
CDispCollNode *pNode = &m_pNodes[nodeIndex];
pNode->GetBounds( bounds[0], bounds[1] );
CreatePlanesFromBounds( pTemp, bounds[0], bounds[1] );
//
// interesect/sweep test
//
bool bResult;
if( bIntersect )
{
bResult = IntersectAABBAABBTest( pTemp, rayStart, extents );
}
else
{
bResult = SweptAABBAABBTest( pTemp, rayStart, rayEnd, extents );
}
if( bResult )
{
// if leaf node -- add triangles to interstection test list
if( pNode->IsLeaf() )
{
// Assert for now -- flush cache later!!!!!
Assert( pTemp->m_TriListCount >= 0 );
Assert( pTemp->m_TriListCount < TRILIST_CACHE_SIZE );
pTemp->m_ppTriList[pTemp->m_TriListCount] = &pNode->m_Tris[0];
pTemp->m_ppTriList[pTemp->m_TriListCount+1] = &pNode->m_Tris[1];
pTemp->m_TriListCount += 2;
}
// continue recursion
else
{
BuildTriList_r( pTemp, GetChildNode( nodeIndex, 0 ), rayStart, rayEnd, extents, bIntersect );
BuildTriList_r( pTemp, GetChildNode( nodeIndex, 1 ), rayStart, rayEnd, extents, bIntersect );
BuildTriList_r( pTemp, GetChildNode( nodeIndex, 2 ), rayStart, rayEnd, extents, bIntersect );
BuildTriList_r( pTemp, GetChildNode( nodeIndex, 3 ), rayStart, rayEnd, extents, bIntersect );
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CDispCollTree::AABBSweep( CDispCollData *pData )
{
// reset the triangle lists counts
CDispCollTreeTempData tmp;
tmp.m_TriListCount = 0;
// sweep the AABB against the tree
BuildTriList_r( &tmp, 0, pData->m_StartPos, pData->m_EndPos, pData->m_Extents, false );
// find collision triangles
if( CullTriList( &tmp, pData->m_StartPos, pData->m_EndPos, pData->m_Extents, false ) )
{
// find closest intersection
return AABBTriIntersect( &tmp, pData );
}
return false;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CDispCollTree::AABBIntersect( CDispCollData *pData )
{
// reset the triangle lists counts
CDispCollTreeTempData tmp;
tmp.m_TriListCount = 0;
// sweep the AABB against the tree
BuildTriList_r( &tmp, 0, pData->m_StartPos, pData->m_StartPos, pData->m_Extents, true );
// find collision triangles
return CullTriList( &tmp, pData->m_StartPos, pData->m_StartPos, pData->m_Extents, true );
}