css_enhanced_waf/game/server/NextBot/NextBotGroundLocomotion.cpp
FluorescentCIAAfricanAmerican 3bf9df6b27 1
2020-04-22 12:56:21 -04:00

1442 lines
38 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
// NextBotGroundLocomotion.cpp
// Basic ground-based movement for NextBotCombatCharacters
// Author: Michael Booth, February 2009
// Note: This is a refactoring of ZombieBotLocomotion from L4D
#include "cbase.h"
#include "func_break.h"
#include "func_breakablesurf.h"
#include "activitylist.h"
#include "BasePropDoor.h"
#include "nav.h"
#include "NextBot.h"
#include "NextBotGroundLocomotion.h"
#include "NextBotUtil.h"
#include "functorutils.h"
#include "SharedFunctorUtils.h"
#include "tier0/vprof.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#pragma warning( disable : 4355 ) // warning 'this' used in base member initializer list - we're using it safely
//----------------------------------------------------------------------------------------------------------
NextBotGroundLocomotion::NextBotGroundLocomotion( INextBot *bot ) : ILocomotion( bot )
{
m_nextBot = NULL;
m_ladder = NULL;
m_desiredLean.x = 0.0f;
m_desiredLean.y = 0.0f;
m_desiredLean.z = 0.0f;
m_bRecomputePostureOnCollision = false;
m_ignorePhysicsPropTimer.Invalidate();
}
//----------------------------------------------------------------------------------------------------------
NextBotGroundLocomotion::~NextBotGroundLocomotion()
{
}
//----------------------------------------------------------------------------------------------------------
/**
* Reset locomotor to initial state
*/
void NextBotGroundLocomotion::Reset( void )
{
BaseClass::Reset();
m_bRecomputePostureOnCollision = false;
m_ignorePhysicsPropTimer.Invalidate();
m_nextBot = static_cast< NextBotCombatCharacter * >( GetBot()->GetEntity() );
m_desiredSpeed = 0.0f;
m_velocity = vec3_origin;
m_acceleration = vec3_origin;
m_desiredLean.x = 0.0f;
m_desiredLean.y = 0.0f;
m_desiredLean.z = 0.0f;
m_ladder = NULL;
m_isJumping = false;
m_isJumpingAcrossGap = false;
m_ground = NULL;
m_groundNormal = Vector( 0, 0, 1.0f );
m_isClimbingUpToLedge = false;
m_isUsingFullFeetTrace = false;
m_moveVector = Vector( 1, 0, 0 );
m_priorPos = m_nextBot->GetPosition();
m_lastValidPos = m_nextBot->GetPosition();
m_inhibitObstacleAvoidanceTimer.Invalidate();
m_accumApproachVectors = vec3_origin;
m_accumApproachWeights = 0.0f;
}
//----------------------------------------------------------------------------------------------------------
/**
* Move the bot along a ladder
*/
bool NextBotGroundLocomotion::TraverseLadder( void )
{
// not climbing a ladder right now
return false;
}
//----------------------------------------------------------------------------------------------------------
/**
* Update internal state
*/
void NextBotGroundLocomotion::Update( void )
{
VPROF_BUDGET( "NextBotGroundLocomotion::Update", "NextBot" );
BaseClass::Update();
const float deltaT = GetUpdateInterval();
// apply accumulated position changes
ApplyAccumulatedApproach();
// need to do this first thing, because ground constraints, etc, can change it
Vector origPos = GetFeet();
IBody *body = GetBot()->GetBodyInterface();
if ( TraverseLadder() )
{
// bot is climbing a ladder
return;
}
if ( !body->IsPostureMobile() )
{
// sitting/lying on the ground - no slip
m_acceleration.x = 0.0f;
m_acceleration.y = 0.0f;
m_velocity.x = 0.0f;
m_velocity.y = 0.0f;
}
bool wasOnGround = IsOnGround();
if ( !body->HasActivityType( IBody::MOTION_CONTROLLED_Z ) )
{
// fall if in the air
if ( !IsOnGround() )
{
// no ground below us - fall
m_acceleration.z -= GetGravity();
}
if ( !IsClimbingOrJumping() || m_velocity.z <= 0.0f )
{
// keep us on the ground
UpdateGroundConstraint();
}
}
Vector newPos = GetFeet();
//
// Update position physics
//
Vector right( m_moveVector.y, -m_moveVector.x, 0.0f );
if ( IsOnGround() ) // || m_isClimbingUpToLedge )
{
if ( IsAttemptingToMove() )
{
float forwardSpeed = DotProduct( m_velocity, m_moveVector );
Vector forwardVelocity = forwardSpeed * m_moveVector;
Vector sideVelocity = DotProduct( m_velocity, right ) * right;
Vector frictionAccel = vec3_origin;
// only apply friction along forward direction if we are sliding backwards
if ( forwardSpeed < 0.0f )
{
frictionAccel = -GetFrictionForward() * forwardVelocity;
}
// always apply lateral friction to counteract sideslip
frictionAccel += -GetFrictionSideways() * sideVelocity;
m_acceleration.x += frictionAccel.x;
m_acceleration.y += frictionAccel.y;
}
else
{
// come to a stop if we haven't been told to move
m_acceleration = vec3_origin;
m_velocity = vec3_origin;
}
}
// compute new position, taking into account MOTION_CONTROLLED animations in progress
if ( body->HasActivityType( IBody::MOTION_CONTROLLED_XY ) )
{
m_acceleration.x = 0.0f;
m_acceleration.y = 0.0f;
m_velocity.x = GetBot()->GetEntity()->GetAbsVelocity().x;
m_velocity.y = GetBot()->GetEntity()->GetAbsVelocity().y;
}
else
{
// euler integration
m_velocity.x += m_acceleration.x * deltaT;
m_velocity.y += m_acceleration.y * deltaT;
// euler integration
newPos.x += m_velocity.x * deltaT;
newPos.y += m_velocity.y * deltaT;
}
if ( body->HasActivityType( IBody::MOTION_CONTROLLED_Z ) )
{
m_acceleration.z = 0.0f;
m_velocity.z = GetBot()->GetEntity()->GetAbsVelocity().z;
}
else
{
// euler integration
m_velocity.z += m_acceleration.z * deltaT;
// euler integration
newPos.z += m_velocity.z * deltaT;
}
// move bot to new position, resolving collisions along the way
UpdatePosition( newPos );
// set actual velocity based on position change after collision resolution step
Vector adjustedVelocity = ( GetFeet() - origPos ) / deltaT;
if ( !body->HasActivityType( IBody::MOTION_CONTROLLED_XY ) )
{
m_velocity.x = adjustedVelocity.x;
m_velocity.y = adjustedVelocity.y;
}
if ( !body->HasActivityType( IBody::MOTION_CONTROLLED_Z ) )
{
m_velocity.z = adjustedVelocity.z;
}
// collision resolution may create very high instantaneous velocities, limit it
Vector2D groundVel = m_velocity.AsVector2D();
m_actualSpeed = groundVel.NormalizeInPlace();
if ( IsOnGround() )
{
if ( m_actualSpeed > GetRunSpeed() )
{
m_actualSpeed = GetRunSpeed();
m_velocity.x = m_actualSpeed * groundVel.x;
m_velocity.y = m_actualSpeed * groundVel.y;
}
// remove downward velocity when landing on the ground
if ( !wasOnGround )
{
m_velocity.z = 0.0f;
m_acceleration.z = 0.0f;
}
}
else
{
// we're falling. if our velocity has become zero for any reason, shove it forward
const float epsilon = 1.0f;
if ( m_velocity.IsLengthLessThan( epsilon ) )
{
m_velocity = GetRunSpeed() * GetGroundMotionVector();
}
}
// update entity velocity to that of locomotor
m_nextBot->SetAbsVelocity( m_velocity );
#ifdef LEANING
// lean sideways proportional to lateral acceleration
QAngle lean = GetDesiredLean();
float sideAccel = DotProduct( right, m_acceleration );
float slide = sideAccel / GetMaxAcceleration();
// max lean depends on how fast we're actually moving
float maxLeanAngle = NextBotLeanMaxAngle.GetFloat() * m_actualSpeed / GetRunSpeed();
// actual lean angle is proportional to lateral acceleration (sliding)
float desiredSideLean = -maxLeanAngle * slide;
lean.y += ( desiredSideLean - lean.y ) * NextBotLeanRate.GetFloat() * deltaT;
SetDesiredLean( lean );
#endif // _DEBUG
// reset acceleration accumulation
m_acceleration = vec3_origin;
// debug display
if ( GetBot()->IsDebugging( NEXTBOT_LOCOMOTION ) )
{
// track position over time
if ( IsOnGround() )
{
NDebugOverlay::Cross3D( GetFeet(), 1.0f, 0, 255, 0, true, 15.0f );
}
else
{
NDebugOverlay::Cross3D( GetFeet(), 1.0f, 0, 255, 255, true, 15.0f );
}
}
}
//----------------------------------------------------------------------------------------------------------
/**
* Move directly towards given position.
* We need to do this in-air as well to land jumps.
*/
void NextBotGroundLocomotion::Approach( const Vector &rawPos, float goalWeight )
{
BaseClass::Approach( rawPos );
m_accumApproachVectors += ( rawPos - GetFeet() ) * goalWeight;
m_accumApproachWeights += goalWeight;
m_bRecomputePostureOnCollision = true;
}
//----------------------------------------------------------------------------------------------------------
void NextBotGroundLocomotion::ApplyAccumulatedApproach( void )
{
VPROF_BUDGET( "NextBotGroundLocomotion::ApplyAccumulatedApproach", "NextBot" );
Vector rawPos = GetFeet();
const float deltaT = GetUpdateInterval();
if ( deltaT <= 0.0f )
return;
if ( m_accumApproachWeights > 0.0f )
{
Vector approachDelta = m_accumApproachVectors / m_accumApproachWeights;
// limit total movement to our max speed
float maxMove = GetRunSpeed() * deltaT;
float desiredMove = approachDelta.NormalizeInPlace();
if ( desiredMove > maxMove )
{
desiredMove = maxMove;
}
rawPos += desiredMove * approachDelta;
m_accumApproachVectors = vec3_origin;
m_accumApproachWeights = 0.0f;
}
// can only move in 2D - geometry moves us up and down
Vector pos( rawPos.x, rawPos.y, GetFeet().z );
if ( !GetBot()->GetBodyInterface()->IsPostureMobile() )
{
// body is not in a movable state right now
return;
}
Vector currentPos = m_nextBot->GetPosition();
// compute unit vector to goal position
m_moveVector = pos - currentPos;
m_moveVector.z = 0.0f;
float change = m_moveVector.NormalizeInPlace();
const float epsilon = 0.001f;
if ( change < epsilon )
{
// no motion
m_forwardLean = 0.0f;
m_sideLean = 0.0f;
return;
}
/*
// lean forward/backward based on acceleration
float desiredLean = m_acceleration / NextBotLeanForwardAccel.GetFloat();
QAngle lean = GetDesiredLean();
lean.x = NextBotLeanMaxAngle.GetFloat() * clamp( desiredLean, -1.0f, 1.0f );
SetDesiredLean( lean );
*/
Vector newPos;
// if we just started a jump, don't snap to the ground - let us get in the air first
if ( DidJustJump() || !IsOnGround() )
{
if ( false && m_isClimbingUpToLedge ) // causes bots to hang in air stuck against edges
{
// drive towards the approach position in XY to help reach ledge
m_moveVector = m_ledgeJumpGoalPos - currentPos;
m_moveVector.z = 0.0f;
m_moveVector.NormalizeInPlace();
m_acceleration += GetMaxAcceleration() * m_moveVector;
}
}
else if ( IsOnGround() )
{
// on the ground - move towards the approach position
m_isClimbingUpToLedge = false;
// snap forward movement vector along floor
const Vector &groundNormal = GetGroundNormal();
Vector left( -m_moveVector.y, m_moveVector.x, 0.0f );
m_moveVector = CrossProduct( left, groundNormal );
m_moveVector.NormalizeInPlace();
// limit maximum forward speed from self-acceleration
float forwardSpeed = DotProduct( m_velocity, m_moveVector );
float maxSpeed = MIN( m_desiredSpeed, GetSpeedLimit() );
if ( forwardSpeed < maxSpeed )
{
float ratio = ( forwardSpeed <= 0.0f ) ? 0.0f : ( forwardSpeed / maxSpeed );
float governor = 1.0f - ( ratio * ratio * ratio * ratio );
// accelerate towards goal
m_acceleration += governor * GetMaxAcceleration() * m_moveVector;
}
}
}
//----------------------------------------------------------------------------------------------------------
/**
* Move the bot to the precise given position immediately,
*/
void NextBotGroundLocomotion::DriveTo( const Vector &pos )
{
BaseClass::DriveTo( pos );
m_bRecomputePostureOnCollision = true;
UpdatePosition( pos );
}
//--------------------------------------------------------------------------------------------
/*
* Trace filter solely for use with DetectCollision() below.
*/
class GroundLocomotionCollisionTraceFilter : public CTraceFilterSimple
{
public:
GroundLocomotionCollisionTraceFilter( INextBot *me, const IHandleEntity *passentity, int collisionGroup ) : CTraceFilterSimple( passentity, collisionGroup )
{
m_me = me;
}
virtual bool ShouldHitEntity( IHandleEntity *pServerEntity, int contentsMask )
{
if ( CTraceFilterSimple::ShouldHitEntity( pServerEntity, contentsMask ) )
{
CBaseEntity *entity = EntityFromEntityHandle( pServerEntity );
// don't collide with ourself
if ( entity && m_me->IsSelf( entity ) )
return false;
return m_me->GetLocomotionInterface()->ShouldCollideWith( entity );
}
return false;
}
INextBot *m_me;
};
//----------------------------------------------------------------------------------------------------------
/**
* Check for collisions during move and attempt to resolve them
*/
bool NextBotGroundLocomotion::DetectCollision( trace_t *pTrace, int &recursionLimit, const Vector &from, const Vector &to, const Vector &vecMins, const Vector &vecMaxs )
{
IBody *body = GetBot()->GetBodyInterface();
CBaseEntity *ignore = m_ignorePhysicsPropTimer.IsElapsed() ? NULL : m_ignorePhysicsProp;
GroundLocomotionCollisionTraceFilter filter( GetBot(), ignore, body->GetCollisionGroup() );
TraceHull( from, to, vecMins, vecMaxs, body->GetSolidMask(), &filter, pTrace );
if ( !pTrace->DidHit() )
return false;
//
// A collision occurred - resolve it
//
// bust through "flimsy" breakables and keep on going
if ( pTrace->DidHitNonWorldEntity() && pTrace->m_pEnt != NULL )
{
CBaseEntity *other = pTrace->m_pEnt;
if ( !other->MyCombatCharacterPointer() && IsEntityTraversable( other, IMMEDIATELY ) /*&& IsFlimsy( other )*/ )
{
if ( recursionLimit <= 0 )
return true;
--recursionLimit;
// break the weak breakable we collided with
CTakeDamageInfo damageInfo( GetBot()->GetEntity(), GetBot()->GetEntity(), 100.0f, DMG_CRUSH );
CalculateExplosiveDamageForce( &damageInfo, GetMotionVector(), pTrace->endpos );
other->TakeDamage( damageInfo );
// retry trace now that the breakable is out of the way
return DetectCollision( pTrace, recursionLimit, from, to, vecMins, vecMaxs );
}
}
/// @todo Only invoke OnContact() and Touch() once per collision pair
// inform other components of collision
if ( GetBot()->ShouldTouch( pTrace->m_pEnt ) )
{
GetBot()->OnContact( pTrace->m_pEnt, pTrace );
}
INextBot *them = dynamic_cast< INextBot * >( pTrace->m_pEnt );
if ( them && them->ShouldTouch( m_nextBot ) )
{
/// @todo construct mirror of trace
them->OnContact( m_nextBot );
}
else
{
pTrace->m_pEnt->Touch( GetBot()->GetEntity() );
}
return true;
}
//----------------------------------------------------------------------------------------------------------
Vector NextBotGroundLocomotion::ResolveCollision( const Vector &from, const Vector &to, int recursionLimit )
{
VPROF_BUDGET( "NextBotGroundLocomotion::ResolveCollision", "NextBotExpensive" );
IBody *body = GetBot()->GetBodyInterface();
if ( body == NULL || recursionLimit < 0 )
{
Assert( !m_bRecomputePostureOnCollision );
return to;
}
// Only bother to recompute posture if we're currently standing or crouching
if ( m_bRecomputePostureOnCollision )
{
if ( !body->IsActualPosture( IBody::STAND ) && !body->IsActualPosture( IBody::CROUCH ) )
{
m_bRecomputePostureOnCollision = false;
}
}
// get bounding limits, ignoring step-upable height
bool bPerformCrouchTest = false;
Vector mins;
Vector maxs;
if ( m_isUsingFullFeetTrace )
{
mins = body->GetHullMins();
}
else
{
mins = body->GetHullMins() + Vector( 0, 0, GetStepHeight() );
}
if ( !m_bRecomputePostureOnCollision )
{
maxs = body->GetHullMaxs();
if ( mins.z >= maxs.z )
{
// if mins.z is greater than maxs.z, the engine will Assert
// in UTIL_TraceHull, and it won't work as advertised.
mins.z = maxs.z - 2.0f;
}
}
else
{
const float halfSize = body->GetHullWidth() / 2.0f;
maxs.Init( halfSize, halfSize, body->GetStandHullHeight() );
bPerformCrouchTest = true;
}
trace_t trace;
Vector desiredGoal = to;
Vector resolvedGoal;
IBody::PostureType nPosture = IBody::STAND;
while( true )
{
bool bCollided = DetectCollision( &trace, recursionLimit, from, desiredGoal, mins, maxs );
if ( !bCollided )
{
resolvedGoal = desiredGoal;
break;
}
// If we hit really close to our target, then stop
if ( !trace.startsolid && desiredGoal.DistToSqr( trace.endpos ) < 1.0f )
{
resolvedGoal = trace.endpos;
break;
}
// Check for crouch test, if it's necessary
// Don't bother about checking for crouch if we hit an actor
// Also don't bother checking for crouch if we hit a plane that pushes us upwards
if ( bPerformCrouchTest )
{
// Don't do this work twice
bPerformCrouchTest = false;
nPosture = body->GetDesiredPosture();
if ( !trace.m_pEnt->MyNextBotPointer() && !trace.m_pEnt->IsPlayer() )
{
// Here, our standing trace hit the world or something non-breakable
// If we're not currently crouching, then see if we could travel
// the entire distance if we were crouched
if ( nPosture != IBody::CROUCH )
{
trace_t crouchTrace;
NextBotTraversableTraceFilter crouchFilter( GetBot(), ILocomotion::IMMEDIATELY );
Vector vecCrouchMax( maxs.x, maxs.y, body->GetCrouchHullHeight() );
TraceHull( from, desiredGoal, mins, vecCrouchMax, body->GetSolidMask(), &crouchFilter, &crouchTrace );
if ( crouchTrace.fraction >= 1.0f && !crouchTrace.startsolid )
{
nPosture = IBody::CROUCH;
}
}
}
else if ( nPosture == IBody::CROUCH )
{
// Here, our standing trace hit an actor
// NOTE: This test occurs almost never, based on my tests
// Converts from crouch to stand in the case where the player
// is currently crouching, *and* his first trace (with the standing hull)
// hits an actor *and* if he didn't hit that actor, he could have
// moved standing the entire way to his desired endpoint
trace_t standTrace;
NextBotTraversableTraceFilter standFilter( GetBot(), ILocomotion::IMMEDIATELY );
TraceHull( from, desiredGoal, mins, maxs, body->GetSolidMask(), &standFilter, &standTrace );
if ( standTrace.fraction >= 1.0f && !standTrace.startsolid )
{
nPosture = IBody::STAND;
}
}
// Our first trace was based on the standing hull.
// If we need be crouched, the trace was bogus; we need to do another
if ( nPosture == IBody::CROUCH )
{
maxs.z = body->GetCrouchHullHeight();
continue;
}
}
if ( trace.startsolid )
{
// stuck inside solid; don't move
if ( trace.m_pEnt && !trace.m_pEnt->IsWorld() )
{
// only ignore physics props that are not doors
if ( dynamic_cast< CPhysicsProp * >( trace.m_pEnt ) != NULL && dynamic_cast< CBasePropDoor * >( trace.m_pEnt ) == NULL )
{
IPhysicsObject *physics = trace.m_pEnt->VPhysicsGetObject();
if ( physics && physics->IsMoveable() )
{
// we've intersected a (likely moving) physics prop - ignore it for awhile so we can move out of it
m_ignorePhysicsProp = trace.m_pEnt;
m_ignorePhysicsPropTimer.Start( 1.0f );
}
}
}
// return to last known non-interpenetrating position
resolvedGoal = m_lastValidPos;
break;
}
if ( --recursionLimit <= 0 )
{
// reached recursion limit, no more adjusting allowed
resolvedGoal = trace.endpos;
break;
}
// never slide downwards/concave to avoid getting stuck in the ground
if ( trace.plane.normal.z < 0.0f )
{
trace.plane.normal.z = 0.0f;
trace.plane.normal.NormalizeInPlace();
}
// slide off of surface we hit
Vector fullMove = desiredGoal - from;
Vector leftToMove = fullMove * ( 1.0f - trace.fraction );
// obey climbing slope limit
if ( !body->HasActivityType( IBody::MOTION_CONTROLLED_Z ) &&
trace.plane.normal.z < GetTraversableSlopeLimit() &&
fullMove.z > 0.0f )
{
fullMove.z = 0.0f;
trace.plane.normal.z = 0.0f;
trace.plane.normal.NormalizeInPlace();
}
float blocked = DotProduct( trace.plane.normal, leftToMove );
Vector unconstrained = fullMove - blocked * trace.plane.normal;
if ( GetBot()->IsDebugging( NEXTBOT_LOCOMOTION ) )
{
NDebugOverlay::Line( trace.endpos,
trace.endpos + 20.0f * trace.plane.normal,
255, 0, 150, true, 15.0f );
}
// check for collisions along remainder of move
// But don't bother if we're not going to deflect much
Vector remainingMove = from + unconstrained;
if ( remainingMove.DistToSqr( trace.endpos ) < 1.0f )
{
resolvedGoal = trace.endpos;
break;
}
desiredGoal = remainingMove;
}
if ( !trace.startsolid )
{
m_lastValidPos = resolvedGoal;
}
if ( m_bRecomputePostureOnCollision )
{
m_bRecomputePostureOnCollision = false;
if ( !body->IsActualPosture( nPosture ) )
{
body->SetDesiredPosture( nPosture );
}
}
return resolvedGoal;
}
//--------------------------------------------------------------------------------------------------------
/**
* Collect the closest actors
*/
class ClosestActorsScan
{
public:
ClosestActorsScan( const Vector &spot, int team, float maxRange = 0.0f, CBaseCombatCharacter *ignore = NULL )
{
m_spot = spot;
m_team = team;
m_close = NULL;
if ( maxRange > 0.0f )
{
m_closeRangeSq = maxRange * maxRange;
}
else
{
m_closeRangeSq = 999999999.9f;
}
m_ignore = ignore;
}
bool operator() ( CBaseCombatCharacter *actor )
{
if (actor == m_ignore)
return true;
if (actor->IsAlive() && (m_team == TEAM_ANY || actor->GetTeamNumber() == m_team))
{
Vector to = actor->WorldSpaceCenter() - m_spot;
float rangeSq = to.LengthSqr();
if (rangeSq < m_closeRangeSq)
{
m_closeRangeSq = rangeSq;
m_close = actor;
}
}
return true;
}
CBaseCombatCharacter *GetActor( void ) const
{
return m_close;
}
bool IsCloserThan( float range )
{
return (m_closeRangeSq < (range * range));
}
bool IsFartherThan( float range )
{
return (m_closeRangeSq > (range * range));
}
Vector m_spot;
int m_team;
CBaseCombatCharacter *m_close;
float m_closeRangeSq;
CBaseCombatCharacter *m_ignore;
};
#ifdef SKIPME
//----------------------------------------------------------------------------------------------------------
/**
* Push away zombies that are interpenetrating
*/
Vector NextBotGroundLocomotion::ResolveZombieCollisions( const Vector &pos )
{
Vector adjustedNewPos = pos;
Infected *me = m_nextBot->MyInfectedPointer();
const float hullWidth = me->GetBodyInterface()->GetHullWidth();
// only avoid if we're actually trying to move somewhere, and are enraged
if ( me != NULL && !IsUsingLadder() && !IsClimbingOrJumping() && IsOnGround() && m_nextBot->IsAlive() && IsAttemptingToMove() /*&& GetBot()->GetBodyInterface()->IsArousal( IBody::INTENSE )*/ )
{
VPROF_BUDGET( "NextBotGroundLocomotion::ResolveZombieCollisions", "NextBot" );
const CUtlVector< CHandle< Infected > > &neighbors = me->GetNeighbors();
Vector avoid = vec3_origin;
float avoidWeight = 0.0f;
FOR_EACH_VEC( neighbors, it )
{
Infected *them = neighbors[ it ];
if ( them )
{
Vector toThem = them->GetAbsOrigin() - me->GetAbsOrigin();
toThem.z = 0.0f;
float range = toThem.NormalizeInPlace();
if ( range < hullWidth )
{
// these two infected are in contact
me->Touch( them );
// move out of contact
float penetration = hullWidth - range;
float weight = 1.0f + ( 2.0f * penetration/hullWidth );
avoid += -weight * toThem;
avoidWeight += weight;
}
}
}
if ( avoidWeight > 0.0f )
{
adjustedNewPos += 3.0f * ( avoid / avoidWeight );
}
}
return adjustedNewPos;
}
#endif // _DEBUG
//----------------------------------------------------------------------------------------------------------
/**
* Move to newPos, resolving any collisions along the way
*/
void NextBotGroundLocomotion::UpdatePosition( const Vector &newPos )
{
VPROF_BUDGET( "NextBotGroundLocomotion::UpdatePosition", "NextBot" );
if ( NextBotStop.GetBool() || (m_nextBot->GetFlags() & FL_FROZEN) != 0 || newPos == m_nextBot->GetPosition() )
{
return;
}
// avoid very nearby Actors to simulate "mushy" collisions between actors in contact with each other
//Vector adjustedNewPos = ResolveZombieCollisions( newPos );
Vector adjustedNewPos = newPos;
// check for collisions during move and resolve them
const int recursionLimit = 3;
Vector safePos = ResolveCollision( m_nextBot->GetPosition(), adjustedNewPos, recursionLimit );
// set the bot's position
if ( GetBot()->GetIntentionInterface()->IsPositionAllowed( GetBot(), safePos ) != ANSWER_NO )
{
m_nextBot->SetPosition( safePos );
}
}
//----------------------------------------------------------------------------------------------------------
/**
* Prevent bot from sliding through floor, and snap to the ground if we're very near it
*/
void NextBotGroundLocomotion::UpdateGroundConstraint( void )
{
VPROF_BUDGET( "NextBotGroundLocomotion::UpdateGroundConstraint", "NextBotExpensive" );
// if we're up on the upward arc of our jump, don't interfere by snapping to ground
// don't do ground constraint if we're climbing a ladder
if ( DidJustJump() || IsAscendingOrDescendingLadder() )
{
m_isUsingFullFeetTrace = false;
return;
}
IBody *body = GetBot()->GetBodyInterface();
if ( body == NULL )
{
return;
}
float halfWidth = body->GetHullWidth()/2.0f;
// since we only care about ground collisions, keep hull short to avoid issues with low ceilings
/// @TODO: We need to also check actual hull height to avoid interpenetrating the world
float hullHeight = GetStepHeight();
// always need tolerance even when jumping/falling to make sure we detect ground penetration
// must be at least step height to avoid 'falling' down stairs
const float stickToGroundTolerance = GetStepHeight() + 0.01f;
trace_t ground;
NextBotTraceFilterIgnoreActors filter( m_nextBot, body->GetCollisionGroup() );
TraceHull( m_nextBot->GetPosition() + Vector( 0, 0, GetStepHeight() + 0.001f ),
m_nextBot->GetPosition() + Vector( 0, 0, -stickToGroundTolerance ),
Vector( -halfWidth, -halfWidth, 0 ),
Vector( halfWidth, halfWidth, hullHeight ),
body->GetSolidMask(), &filter, &ground );
if ( ground.startsolid )
{
// we're inside the ground - bad news
if ( GetBot()->IsDebugging( NEXTBOT_LOCOMOTION ) && !( gpGlobals->framecount % 60 ) )
{
DevMsg( "%3.2f: Inside ground, ( %.0f, %.0f, %.0f )\n", gpGlobals->curtime, m_nextBot->GetPosition().x, m_nextBot->GetPosition().y, m_nextBot->GetPosition().z );
}
return;
}
if ( ground.fraction < 1.0f )
{
// there is ground below us
m_groundNormal = ground.plane.normal;
m_isUsingFullFeetTrace = false;
// zero velocity normal to the ground
float normalVel = DotProduct( m_groundNormal, m_velocity );
m_velocity -= normalVel * m_groundNormal;
// check slope limit
if ( ground.plane.normal.z < GetTraversableSlopeLimit() )
{
// too steep to stand here
// too steep to be ground - treat it like a wall hit
if ( ( m_velocity.x * ground.plane.normal.x + m_velocity.y * ground.plane.normal.y ) <= 0.0f )
{
GetBot()->OnContact( ground.m_pEnt, &ground );
}
// we're contacting some kind of ground
// zero accelerations normal to the ground
float normalAccel = DotProduct( m_groundNormal, m_acceleration );
m_acceleration -= normalAccel * m_groundNormal;
if ( GetBot()->IsDebugging( NEXTBOT_LOCOMOTION ) )
{
DevMsg( "%3.2f: NextBotGroundLocomotion - Too steep to stand here\n", gpGlobals->curtime );
NDebugOverlay::Line( GetFeet(), GetFeet() + 20.0f * ground.plane.normal, 255, 150, 0, true, 5.0f );
}
// clear out upward velocity so we don't walk up lightpoles
m_velocity.z = MIN( 0, m_velocity.z );
m_acceleration.z = MIN( 0, m_acceleration.z );
return;
}
// inform other components of collision if we didn't land on the 'world'
if ( ground.m_pEnt && !ground.m_pEnt->IsWorld() )
{
GetBot()->OnContact( ground.m_pEnt, &ground );
}
// snap us to the ground
m_nextBot->SetPosition( ground.endpos );
if ( !IsOnGround() )
{
// just landed
m_nextBot->SetGroundEntity( ground.m_pEnt );
m_ground = ground.m_pEnt;
// landing stops any jump in progress
m_isJumping = false;
m_isJumpingAcrossGap = false;
GetBot()->OnLandOnGround( ground.m_pEnt );
}
}
else
{
// not on the ground
if ( IsOnGround() )
{
GetBot()->OnLeaveGround( m_nextBot->GetGroundEntity() );
if ( !IsClimbingUpToLedge() && !IsJumpingAcrossGap() )
{
m_isUsingFullFeetTrace = true; // We're in the air and there's space below us, so use the full trace
m_acceleration.z -= GetGravity(); // start our gravity now
}
}
}
}
//----------------------------------------------------------------------------------------------------------
/*
void NextBotGroundLocomotion::StandUp( void )
{
// make sure there is room to stand
trace_t result;
const float halfSize = GetHullWidth()/3.0f;
Vector standHullMin( -halfSize, -halfSize, GetStepHeight() + 0.1f );
Vector standHullMax( halfSize, halfSize, GetStandHullHeight() );
TraceHull( GetFeet(), GetFeet(), standHullMin, standHullMax, MASK_NPCSOLID, m_nextBot, MASK_DEFAULTPLAYERSOLID, &result );
if ( result.fraction >= 1.0f && !result.startsolid )
{
m_isCrouching = false;
}
}
*/
//----------------------------------------------------------------------------------------------------------
/**
* Initiate a climb to an adjacent high ledge
*/
bool NextBotGroundLocomotion::ClimbUpToLedge( const Vector &landingGoal, const Vector &landingForward, const CBaseEntity *obstacle )
{
return false;
}
//----------------------------------------------------------------------------------------------------------
/**
* Initiate a jump across an empty volume of space to far side
*/
void NextBotGroundLocomotion::JumpAcrossGap( const Vector &landingGoal, const Vector &landingForward )
{
// can only jump if we're on the ground
if ( !IsOnGround() )
{
return;
}
IBody *body = GetBot()->GetBodyInterface();
if ( !body->StartActivity( ACT_JUMP ) )
{
// body can't jump right now
return;
}
// scale impulse to land on target
Vector toGoal = landingGoal - GetFeet();
// equation doesn't work if we're jumping upwards
float height = toGoal.z;
toGoal.z = 0.0f;
float range = toGoal.NormalizeInPlace();
// jump out at 45 degree angle
const float cos45 = 0.7071f;
// avoid division by zero
if ( height > 0.9f * range )
{
height = 0.9f * range;
}
// ballistic equation to find initial velocity assuming 45 degree inclination and landing at give range and height
float launchVel = ( range / cos45 ) / sqrt( ( 2.0f * ( range - height ) ) / GetGravity() );
Vector up( 0, 0, 1 );
Vector ahead = up + toGoal;
ahead.NormalizeInPlace();
//m_velocity = cos45 * launchVel * ahead;
m_velocity = launchVel * ahead;
m_acceleration = vec3_origin;
m_isJumping = true;
m_isJumpingAcrossGap = true;
m_isClimbingUpToLedge = false;
GetBot()->OnLeaveGround( m_nextBot->GetGroundEntity() );
}
//----------------------------------------------------------------------------------------------------------
/**
* Initiate a simple undirected jump in the air
*/
void NextBotGroundLocomotion::Jump( void )
{
// can only jump if we're on the ground
if ( !IsOnGround() )
{
return;
}
IBody *body = GetBot()->GetBodyInterface();
if ( !body->StartActivity( ACT_JUMP ) )
{
// body can't jump right now
return;
}
// jump straight up
m_velocity.z = sqrt( 2.0f * GetGravity() * GetMaxJumpHeight() );
m_isJumping = true;
m_isClimbingUpToLedge = false;
GetBot()->OnLeaveGround( m_nextBot->GetGroundEntity() );
}
//----------------------------------------------------------------------------------------------------------
/**
* Set movement speed to running
*/
void NextBotGroundLocomotion::Run( void )
{
m_desiredSpeed = GetRunSpeed();
}
//----------------------------------------------------------------------------------------------------------
/**
* Set movement speed to walking
*/
void NextBotGroundLocomotion::Walk( void )
{
m_desiredSpeed = GetWalkSpeed();
}
//----------------------------------------------------------------------------------------------------------
/**
* Set movement speed to stopeed
*/
void NextBotGroundLocomotion::Stop( void )
{
m_desiredSpeed = 0.0f;
}
//----------------------------------------------------------------------------------------------------------
/**
* Return true if standing on something
*/
bool NextBotGroundLocomotion::IsOnGround( void ) const
{
return (m_nextBot->GetGroundEntity() != NULL);
}
//----------------------------------------------------------------------------------------------------------
/**
* Invoked when bot leaves ground for any reason
*/
void NextBotGroundLocomotion::OnLeaveGround( CBaseEntity *ground )
{
m_nextBot->SetGroundEntity( NULL );
m_ground = NULL;
if ( GetBot()->IsDebugging( NEXTBOT_LOCOMOTION ) )
{
DevMsg( "%3.2f: NextBotGroundLocomotion::OnLeaveGround\n", gpGlobals->curtime );
}
}
//----------------------------------------------------------------------------------------------------------
/**
* Invoked when bot lands on the ground after being in the air
*/
void NextBotGroundLocomotion::OnLandOnGround( CBaseEntity *ground )
{
if ( GetBot()->IsDebugging( NEXTBOT_LOCOMOTION ) )
{
DevMsg( "%3.2f: NextBotGroundLocomotion::GetBot()->OnLandOnGround\n", gpGlobals->curtime );
}
}
//----------------------------------------------------------------------------------------------------------
/**
* Get maximum speed bot can reach, regardless of desired speed
*/
float NextBotGroundLocomotion::GetSpeedLimit( void ) const
{
// if we're crouched, move at reduced speed
if ( !GetBot()->GetBodyInterface()->IsActualPosture( IBody::STAND ) )
{
return 0.75f * GetRunSpeed();
}
// no limit
return 99999999.9f;
}
//----------------------------------------------------------------------------------------------------------
/**
* Climb the given ladder to the top and dismount
*/
void NextBotGroundLocomotion::ClimbLadder( const CNavLadder *ladder, const CNavArea *dismountGoal )
{
// if we're already climbing this ladder, don't restart
if ( m_ladder == ladder && m_isGoingUpLadder )
{
return;
}
m_ladder = ladder;
m_ladderDismountGoal = dismountGoal;
m_isGoingUpLadder = true;
IBody *body = GetBot()->GetBodyInterface();
if ( body )
{
// line them up to climb in XY
Vector mountSpot = m_ladder->m_bottom + m_ladder->GetNormal() * (0.75f * body->GetHullWidth());
mountSpot.z = GetBot()->GetPosition().z;
UpdatePosition( mountSpot );
body->StartActivity( ACT_CLIMB_UP, IBody::MOTION_CONTROLLED_Z );
}
}
//----------------------------------------------------------------------------------------------------------
/**
* Descend the given ladder to the bottom and dismount
*/
void NextBotGroundLocomotion::DescendLadder( const CNavLadder *ladder, const CNavArea *dismountGoal )
{
// if we're already descending this ladder, don't restart
if ( m_ladder == ladder && !m_isGoingUpLadder )
{
return;
}
m_ladder = ladder;
m_ladderDismountGoal = dismountGoal;
m_isGoingUpLadder = false;
IBody *body = GetBot()->GetBodyInterface();
if ( body )
{
// line them up to climb in XY
Vector mountSpot = m_ladder->m_top + m_ladder->GetNormal() * (0.75f * body->GetHullWidth());
mountSpot.z = GetBot()->GetPosition().z;
UpdatePosition( mountSpot );
float ladderYaw = UTIL_VecToYaw( -m_ladder->GetNormal() );
QAngle angles = m_nextBot->GetLocalAngles();
angles.y = ladderYaw;
m_nextBot->SetLocalAngles( angles );
body->StartActivity( ACT_CLIMB_DOWN, IBody::MOTION_CONTROLLED_Z );
}
}
//----------------------------------------------------------------------------------------------------------
bool NextBotGroundLocomotion::IsUsingLadder( void ) const
{
return ( m_ladder != NULL );
}
//----------------------------------------------------------------------------------------------------------
/**
* We are actually on the ladder right now, either climbing up or down
*/
bool NextBotGroundLocomotion::IsAscendingOrDescendingLadder( void ) const
{
return IsUsingLadder();
}
//----------------------------------------------------------------------------------------------------------
/**
* Return position of "feet" - point below centroid of bot at feet level
*/
const Vector &NextBotGroundLocomotion::GetFeet( void ) const
{
return m_nextBot->GetPosition();
}
//----------------------------------------------------------------------------------------------------------
const Vector & NextBotGroundLocomotion::GetAcceleration( void ) const
{
return m_acceleration;
}
//----------------------------------------------------------------------------------------------------------
void NextBotGroundLocomotion::SetAcceleration( const Vector &accel )
{
m_acceleration = accel;
}
//----------------------------------------------------------------------------------------------------------
void NextBotGroundLocomotion::SetVelocity( const Vector &vel )
{
m_velocity = vel;
}
//----------------------------------------------------------------------------------------------------------
/**
* Return current world space velocity
*/
const Vector &NextBotGroundLocomotion::GetVelocity( void ) const
{
return m_velocity;
}
//----------------------------------------------------------------------------------------------------------
/**
* Invoked when an bot reaches its MoveTo goal
*/
void NextBotGroundLocomotion::OnMoveToSuccess( const Path *path )
{
// stop
m_velocity = vec3_origin;
m_acceleration = vec3_origin;
}
//----------------------------------------------------------------------------------------------------------
/**
* Invoked when an bot fails to reach a MoveTo goal
*/
void NextBotGroundLocomotion::OnMoveToFailure( const Path *path, MoveToFailureType reason )
{
// stop
m_velocity = vec3_origin;
m_acceleration = vec3_origin;
}
//----------------------------------------------------------------------------------------------------------
bool NextBotGroundLocomotion::DidJustJump( void ) const
{
return IsClimbingOrJumping() && (m_nextBot->GetAbsVelocity().z > 0.0f);
}
//----------------------------------------------------------------------------------------------------------
/**
* Rotate body to face towards "target"
*/
void NextBotGroundLocomotion::FaceTowards( const Vector &target )
{
const float deltaT = GetUpdateInterval();
QAngle angles = m_nextBot->GetLocalAngles();
float desiredYaw = UTIL_VecToYaw( target - GetFeet() );
float angleDiff = UTIL_AngleDiff( desiredYaw, angles.y );
float deltaYaw = GetMaxYawRate() * deltaT;
if (angleDiff < -deltaYaw)
{
angles.y -= deltaYaw;
}
else if (angleDiff > deltaYaw)
{
angles.y += deltaYaw;
}
else
{
angles.y += angleDiff;
}
m_nextBot->SetLocalAngles( angles );
}