3024 lines
85 KiB
C++
3024 lines
85 KiB
C++
//========= Copyright Valve Corporation, All rights reserved. ============//
|
|
//
|
|
// Purpose: BSP collision!
|
|
//
|
|
// $NoKeywords: $
|
|
//=============================================================================//
|
|
|
|
#include "cmodel_engine.h"
|
|
#include "cmodel_private.h"
|
|
#include "dispcoll_common.h"
|
|
#include "coordsize.h"
|
|
|
|
#include "quakedef.h"
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include "mathlib/mathlib.h"
|
|
#include "common.h"
|
|
#include "sysexternal.h"
|
|
#include "zone.h"
|
|
#include "utlvector.h"
|
|
#include "const.h"
|
|
#include "gl_model_private.h"
|
|
#include "vphysics_interface.h"
|
|
#include "icliententity.h"
|
|
#include "engine/ICollideable.h"
|
|
#include "enginethreads.h"
|
|
#include "sys_dll.h"
|
|
#include "collisionutils.h"
|
|
#include "tier0/tslist.h"
|
|
#include "tier0/vprof.h"
|
|
|
|
// memdbgon must be the last include file in a .cpp file!!!
|
|
#include "tier0/memdbgon.h"
|
|
|
|
CCollisionBSPData g_BSPData; // the global collision bsp
|
|
#define g_BSPData dont_use_g_BSPData_directly
|
|
|
|
#ifdef COUNT_COLLISIONS
|
|
CCollisionCounts g_CollisionCounts; // collision test counters
|
|
#endif
|
|
|
|
csurface_t CCollisionBSPData::nullsurface = { "**empty**", 0, 0 }; // generic null collision model surface
|
|
|
|
csurface_t *CCollisionBSPData::GetSurfaceAtIndex( unsigned short surfaceIndex )
|
|
{
|
|
if ( surfaceIndex == SURFACE_INDEX_INVALID )
|
|
{
|
|
return &nullsurface;
|
|
}
|
|
return &map_surfaces[surfaceIndex];
|
|
}
|
|
|
|
#if TEST_TRACE_POOL
|
|
CTSPool<TraceInfo_t> g_TraceInfoPool;
|
|
#else
|
|
class CTraceInfoPool : public CTSList<TraceInfo_t *>
|
|
{
|
|
public:
|
|
CTraceInfoPool() = default;
|
|
};
|
|
|
|
CTraceInfoPool g_TraceInfoPool;
|
|
#endif
|
|
|
|
TraceInfo_t *BeginTrace()
|
|
{
|
|
#if TEST_TRACE_POOL
|
|
TraceInfo_t *pTraceInfo = g_TraceInfoPool.GetObject();
|
|
#else
|
|
TraceInfo_t *pTraceInfo;
|
|
if ( !g_TraceInfoPool.PopItem( &pTraceInfo ) )
|
|
{
|
|
pTraceInfo = new TraceInfo_t;
|
|
}
|
|
#endif
|
|
if ( pTraceInfo->m_BrushCounters[0].Count() != GetCollisionBSPData()->numbrushes + 1 )
|
|
{
|
|
memset( pTraceInfo->m_Count, 0, sizeof( pTraceInfo->m_Count ) );
|
|
pTraceInfo->m_nCheckDepth = -1;
|
|
|
|
for ( int i = 0; i < MAX_CHECK_COUNT_DEPTH; i++ )
|
|
{
|
|
pTraceInfo->m_BrushCounters[i].SetCount( GetCollisionBSPData()->numbrushes + 1 );
|
|
pTraceInfo->m_DispCounters[i].SetCount( g_DispCollTreeCount );
|
|
|
|
memset( pTraceInfo->m_BrushCounters[i].Base(), 0, pTraceInfo->m_BrushCounters[i].Count() * sizeof(TraceCounter_t) );
|
|
memset( pTraceInfo->m_DispCounters[i].Base(), 0, pTraceInfo->m_DispCounters[i].Count() * sizeof(TraceCounter_t) );
|
|
}
|
|
}
|
|
|
|
PushTraceVisits( pTraceInfo );
|
|
|
|
return pTraceInfo;
|
|
}
|
|
|
|
void PushTraceVisits( TraceInfo_t *pTraceInfo )
|
|
{
|
|
++pTraceInfo->m_nCheckDepth;
|
|
Assert( (pTraceInfo->m_nCheckDepth >= 0) && (pTraceInfo->m_nCheckDepth < MAX_CHECK_COUNT_DEPTH) );
|
|
|
|
int i = pTraceInfo->m_nCheckDepth;
|
|
pTraceInfo->m_Count[i]++;
|
|
if ( pTraceInfo->m_Count[i] == 0 )
|
|
{
|
|
pTraceInfo->m_Count[i]++;
|
|
memset( pTraceInfo->m_BrushCounters[i].Base(), 0, pTraceInfo->m_BrushCounters[i].Count() * sizeof(TraceCounter_t) );
|
|
memset( pTraceInfo->m_DispCounters[i].Base(), 0, pTraceInfo->m_DispCounters[i].Count() * sizeof(TraceCounter_t) );
|
|
}
|
|
}
|
|
|
|
void PopTraceVisits( TraceInfo_t *pTraceInfo )
|
|
{
|
|
--pTraceInfo->m_nCheckDepth;
|
|
Assert( pTraceInfo->m_nCheckDepth >= -1 );
|
|
}
|
|
|
|
void EndTrace( TraceInfo_t *&pTraceInfo )
|
|
{
|
|
PopTraceVisits( pTraceInfo );
|
|
Assert( pTraceInfo->m_nCheckDepth == -1 );
|
|
#if TEST_TRACE_POOL
|
|
g_TraceInfoPool.PutObject( pTraceInfo );
|
|
#else
|
|
g_TraceInfoPool.PushItem( pTraceInfo );
|
|
#endif
|
|
pTraceInfo = NULL;
|
|
}
|
|
|
|
static ConVar map_noareas( "map_noareas", "0", 0, "Disable area to area connection testing." );
|
|
|
|
void FloodAreaConnections (CCollisionBSPData *pBSPData);
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
vcollide_t *CM_GetVCollide( int modelIndex )
|
|
{
|
|
cmodel_t *pModel = CM_InlineModelNumber( modelIndex );
|
|
if( !pModel )
|
|
return NULL;
|
|
|
|
// return the model's collision data
|
|
return &pModel->vcollisionData;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
cmodel_t *CM_InlineModel( const char *name )
|
|
{
|
|
// error checking!
|
|
if( !name )
|
|
return NULL;
|
|
|
|
// JAYHL2: HACKHACK Get rid of this
|
|
if( !strncmp( name, "maps/", 5 ) )
|
|
return CM_InlineModelNumber( 0 );
|
|
|
|
// check for valid name
|
|
if( name[0] != '*' )
|
|
Sys_Error( "CM_InlineModel: bad model name!" );
|
|
|
|
// check for valid model
|
|
int ndxModel = atoi( name + 1 );
|
|
if( ( ndxModel < 1 ) || ( ndxModel >= GetCollisionBSPData()->numcmodels ) )
|
|
Sys_Error( "CM_InlineModel: bad model number!" );
|
|
|
|
return CM_InlineModelNumber( ndxModel );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
cmodel_t *CM_InlineModelNumber( int index )
|
|
{
|
|
CCollisionBSPData *pBSPDataData = GetCollisionBSPData();
|
|
|
|
if( ( index < 0 ) || ( index > pBSPDataData->numcmodels ) )
|
|
return NULL;
|
|
|
|
return ( &pBSPDataData->map_cmodels[ index ] );
|
|
}
|
|
|
|
|
|
int CM_BrushContents_r( CCollisionBSPData *pBSPData, int nodenum )
|
|
{
|
|
int contents = 0;
|
|
|
|
while (1)
|
|
{
|
|
if (nodenum < 0)
|
|
{
|
|
int leafIndex = -1 - nodenum;
|
|
cleaf_t &leaf = pBSPData->map_leafs[leafIndex];
|
|
|
|
for ( int i = 0; i < leaf.numleafbrushes; i++ )
|
|
{
|
|
unsigned short brushIndex = pBSPData->map_leafbrushes[ leaf.firstleafbrush + i ];
|
|
contents |= pBSPData->map_brushes[brushIndex].contents;
|
|
}
|
|
|
|
return contents;
|
|
}
|
|
|
|
cnode_t &node = pBSPData->map_rootnode[nodenum];
|
|
contents |= CM_BrushContents_r( pBSPData, node.children[0] );
|
|
nodenum = node.children[1];
|
|
}
|
|
|
|
return contents;
|
|
}
|
|
|
|
|
|
int CM_InlineModelContents( int index )
|
|
{
|
|
cmodel_t *pModel = CM_InlineModelNumber( index );
|
|
if ( !pModel )
|
|
return 0;
|
|
|
|
return CM_BrushContents_r( GetCollisionBSPData(), pModel->headnode );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
int CM_NumClusters( void )
|
|
{
|
|
return GetCollisionBSPData()->numclusters;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
char *CM_EntityString( void )
|
|
{
|
|
return GetCollisionBSPData()->map_entitystring.Get();
|
|
}
|
|
|
|
void CM_DiscardEntityString( void )
|
|
{
|
|
GetCollisionBSPData()->map_entitystring.Discard();
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
int CM_LeafContents( int leafnum )
|
|
{
|
|
const CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
|
|
Assert( leafnum >= 0 );
|
|
Assert( leafnum < pBSPData->numleafs );
|
|
|
|
return pBSPData->map_leafs[leafnum].contents;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
int CM_LeafCluster( int leafnum )
|
|
{
|
|
const CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
|
|
Assert( leafnum >= 0 );
|
|
Assert( leafnum < pBSPData->numleafs );
|
|
|
|
return pBSPData->map_leafs[leafnum].cluster;
|
|
}
|
|
|
|
|
|
int CM_LeafFlags( int leafnum )
|
|
{
|
|
const CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
|
|
Assert( leafnum >= 0 );
|
|
Assert( leafnum < pBSPData->numleafs );
|
|
|
|
return pBSPData->map_leafs[leafnum].flags;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
int CM_LeafArea( int leafnum )
|
|
{
|
|
const CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
|
|
Assert( leafnum >= 0 );
|
|
Assert( leafnum < pBSPData->numleafs );
|
|
|
|
return pBSPData->map_leafs[leafnum].area;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
void CM_FreeMap(void)
|
|
{
|
|
// get the current collision bsp -- there is only one!
|
|
CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
|
|
// free the collision bsp data
|
|
CollisionBSPData_Destroy( pBSPData );
|
|
}
|
|
|
|
|
|
// This turns on all the area portals that are "always on" in the map.
|
|
void CM_InitPortalOpenState( CCollisionBSPData *pBSPData )
|
|
{
|
|
for ( int i=0; i < pBSPData->numportalopen; i++ )
|
|
{
|
|
pBSPData->portalopen[i] = false;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
==================
|
|
CM_LoadMap
|
|
|
|
Loads in the map and all submodels
|
|
==================
|
|
*/
|
|
cmodel_t *CM_LoadMap( const char *name, bool allowReusePrevious, unsigned *checksum )
|
|
{
|
|
static unsigned int last_checksum = 0xFFFFFFFF;
|
|
|
|
// get the current bsp -- there is currently only one!
|
|
CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
|
|
Assert( physcollision );
|
|
|
|
if( !strcmp( pBSPData->map_name, name ) && allowReusePrevious )
|
|
{
|
|
*checksum = last_checksum;
|
|
return &pBSPData->map_cmodels[0]; // still have the right version
|
|
}
|
|
|
|
// only pre-load if the map doesn't already exist
|
|
CollisionBSPData_PreLoad( pBSPData );
|
|
|
|
if ( !name || !name[0] )
|
|
{
|
|
*checksum = 0;
|
|
return &pBSPData->map_cmodels[0]; // cinematic servers won't have anything at all
|
|
}
|
|
|
|
// read in the collision model data
|
|
CMapLoadHelper::Init( 0, name );
|
|
CollisionBSPData_Load( name, pBSPData );
|
|
CMapLoadHelper::Shutdown( );
|
|
|
|
// Push the displacement bounding boxes down the tree and set leaf data.
|
|
CM_DispTreeLeafnum( pBSPData );
|
|
|
|
CM_InitPortalOpenState( pBSPData );
|
|
FloodAreaConnections(pBSPData);
|
|
|
|
#ifdef COUNT_COLLISIONS
|
|
// initialize counters
|
|
CollisionCounts_Init( &g_CollisionCounts );
|
|
#endif
|
|
|
|
return &pBSPData->map_cmodels[0];
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// Methods associated with colliding against the world + models
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// returns a vcollide that can be used to collide against this model
|
|
//-----------------------------------------------------------------------------
|
|
vcollide_t* CM_VCollideForModel( int modelindex, const model_t* pModel )
|
|
{
|
|
if ( pModel )
|
|
{
|
|
switch( pModel->type )
|
|
{
|
|
case mod_brush:
|
|
return CM_GetVCollide( modelindex-1 );
|
|
case mod_studio:
|
|
Assert( modelloader->IsLoaded( pModel ) );
|
|
return g_pMDLCache->GetVCollide( pModel->studio );
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
|
|
//=======================================================================
|
|
|
|
/*
|
|
==================
|
|
CM_PointLeafnum_r
|
|
|
|
==================
|
|
*/
|
|
int CM_PointLeafnumMinDistSqr_r( CCollisionBSPData *pBSPData, const Vector& p, int num, float &minDistSqr )
|
|
{
|
|
float d;
|
|
cnode_t *node;
|
|
cplane_t *plane;
|
|
|
|
while (num >= 0)
|
|
{
|
|
node = pBSPData->map_rootnode + num;
|
|
plane = node->plane;
|
|
|
|
if (plane->type < 3)
|
|
d = p[plane->type] - plane->dist;
|
|
else
|
|
d = DotProduct (plane->normal, p) - plane->dist;
|
|
|
|
minDistSqr = fpmin( d*d, minDistSqr );
|
|
if (d < 0)
|
|
num = node->children[1];
|
|
else
|
|
num = node->children[0];
|
|
}
|
|
|
|
#ifdef COUNT_COLLISIONS
|
|
g_CollisionCounts.m_PointContents++; // optimize counter
|
|
#endif
|
|
|
|
return -1 - num;
|
|
}
|
|
|
|
int CM_PointLeafnum_r( CCollisionBSPData *pBSPData, const Vector& p, int num)
|
|
{
|
|
float d;
|
|
cnode_t *node;
|
|
cplane_t *plane;
|
|
|
|
while (num >= 0)
|
|
{
|
|
node = pBSPData->map_rootnode + num;
|
|
plane = node->plane;
|
|
|
|
if (plane->type < 3)
|
|
d = p[plane->type] - plane->dist;
|
|
else
|
|
d = DotProduct (plane->normal, p) - plane->dist;
|
|
if (d < 0)
|
|
num = node->children[1];
|
|
else
|
|
num = node->children[0];
|
|
}
|
|
|
|
#ifdef COUNT_COLLISIONS
|
|
g_CollisionCounts.m_PointContents++; // optimize counter
|
|
#endif
|
|
|
|
return -1 - num;
|
|
}
|
|
|
|
int CM_PointLeafnum (const Vector& p)
|
|
{
|
|
// get the current collision bsp -- there is only one!
|
|
CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
|
|
if (!pBSPData->numplanes)
|
|
return 0; // sound may call this without map loaded
|
|
return CM_PointLeafnum_r (pBSPData, p, 0);
|
|
}
|
|
|
|
void CM_SnapPointToReferenceLeaf_r( CCollisionBSPData *pBSPData, const Vector& p, int num, float tolerance, Vector *pSnapPoint )
|
|
{
|
|
float d, snapDist;
|
|
cnode_t *node;
|
|
cplane_t *plane;
|
|
|
|
while (num >= 0)
|
|
{
|
|
node = pBSPData->map_rootnode + num;
|
|
plane = node->plane;
|
|
|
|
if (plane->type < 3)
|
|
{
|
|
d = p[plane->type] - plane->dist;
|
|
snapDist = (*pSnapPoint)[plane->type] - plane->dist;
|
|
}
|
|
else
|
|
{
|
|
d = DotProduct (plane->normal, p) - plane->dist;
|
|
snapDist = DotProduct (plane->normal, *pSnapPoint) - plane->dist;
|
|
}
|
|
|
|
if (d < 0)
|
|
{
|
|
num = node->children[1];
|
|
if ( snapDist > 0 )
|
|
{
|
|
*pSnapPoint -= plane->normal * (snapDist + tolerance);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
num = node->children[0];
|
|
if ( snapDist < 0 )
|
|
{
|
|
*pSnapPoint += plane->normal * (-snapDist + tolerance);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CM_SnapPointToReferenceLeaf(const Vector &referenceLeafPoint, float tolerance, Vector *pSnapPoint)
|
|
{
|
|
// get the current collision bsp -- there is only one!
|
|
CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
|
|
if (pBSPData->numplanes)
|
|
{
|
|
CM_SnapPointToReferenceLeaf_r(pBSPData, referenceLeafPoint, 0, tolerance, pSnapPoint);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=============
|
|
CM_BoxLeafnums
|
|
|
|
Fills in a list of all the leafs touched
|
|
=============
|
|
*/
|
|
struct leafnums_t
|
|
{
|
|
int leafTopNode;
|
|
int leafMaxCount;
|
|
int *pLeafList;
|
|
CCollisionBSPData *pBSPData;
|
|
};
|
|
|
|
int CM_BoxLeafnums( leafnums_t &context, const Vector ¢er, const Vector &extents, int nodenum )
|
|
{
|
|
int leafCount = 0;
|
|
const int NODELIST_MAX = 1024;
|
|
int nodeList[NODELIST_MAX];
|
|
int nodeReadIndex = 0;
|
|
int nodeWriteIndex = 0;
|
|
cplane_t *plane;
|
|
cnode_t *node;
|
|
int prev_topnode = -1;
|
|
|
|
while (1)
|
|
{
|
|
if (nodenum < 0)
|
|
{
|
|
// This handles the case when the box lies completely
|
|
// within a single node. In that case, the top node should be
|
|
// the parent of the leaf
|
|
if (context.leafTopNode == -1)
|
|
context.leafTopNode = prev_topnode;
|
|
|
|
if (leafCount < context.leafMaxCount)
|
|
{
|
|
context.pLeafList[leafCount] = -1 - nodenum;
|
|
leafCount++;
|
|
}
|
|
if ( nodeReadIndex == nodeWriteIndex )
|
|
return leafCount;
|
|
nodenum = nodeList[nodeReadIndex];
|
|
nodeReadIndex = (nodeReadIndex+1) & (NODELIST_MAX-1);
|
|
}
|
|
else
|
|
{
|
|
node = &context.pBSPData->map_rootnode[nodenum];
|
|
plane = node->plane;
|
|
// s = BoxOnPlaneSide (leaf_mins, leaf_maxs, plane);
|
|
// s = BOX_ON_PLANE_SIDE(*leaf_mins, *leaf_maxs, plane);
|
|
float d0 = DotProduct( plane->normal, center ) - plane->dist;
|
|
float d1 = DotProductAbs( plane->normal, extents );
|
|
prev_topnode = nodenum;
|
|
if (d0 >= d1)
|
|
nodenum = node->children[0];
|
|
else if (d0 < -d1)
|
|
nodenum = node->children[1];
|
|
else
|
|
{ // go down both
|
|
if (context.leafTopNode == -1)
|
|
context.leafTopNode = nodenum;
|
|
nodeList[nodeWriteIndex] = node->children[0];
|
|
nodeWriteIndex = (nodeWriteIndex+1) & (NODELIST_MAX-1);
|
|
// check for overflow of the ring buffer
|
|
Assert(nodeWriteIndex != nodeReadIndex);
|
|
nodenum = node->children[1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int CM_BoxLeafnums ( const Vector& mins, const Vector& maxs, int *list, int listsize, int *topnode)
|
|
{
|
|
leafnums_t context;
|
|
context.pLeafList = list;
|
|
context.leafTopNode = -1;
|
|
context.leafMaxCount = listsize;
|
|
// get the current collision bsp -- there is only one!
|
|
context.pBSPData = GetCollisionBSPData();
|
|
Vector center = (mins+maxs)*0.5f;
|
|
Vector extents = maxs - center;
|
|
int leafCount = CM_BoxLeafnums(context, center, extents, context.pBSPData->map_cmodels[0].headnode );
|
|
|
|
if (topnode)
|
|
*topnode = context.leafTopNode;
|
|
|
|
return leafCount;
|
|
}
|
|
|
|
// UNDONE: This is a version that returns only leaves with valid clusters
|
|
// UNDONE: Use this in the PVS calcs for networking
|
|
#if 0
|
|
int CM_BoxClusters( leafnums_t * RESTRICT pContext, const Vector ¢er, const Vector &extents, int nodenum )
|
|
{
|
|
const int NODELIST_MAX = 1024;
|
|
int nodeList[NODELIST_MAX];
|
|
int nodeReadIndex = 0;
|
|
int nodeWriteIndex = 0;
|
|
cplane_t *RESTRICT plane;
|
|
cnode_t *RESTRICT node;
|
|
int prev_topnode = -1;
|
|
int leafCount = 0;
|
|
while (1)
|
|
{
|
|
if (nodenum < 0)
|
|
{
|
|
int leafIndex = -1 - nodenum;
|
|
// This handles the case when the box lies completely
|
|
// within a single node. In that case, the top node should be
|
|
// the parent of the leaf
|
|
if (pContext->leafTopNode == -1)
|
|
pContext->leafTopNode = prev_topnode;
|
|
|
|
if (leafCount < pContext->leafMaxCount)
|
|
{
|
|
cleaf_t *RESTRICT pLeaf = &pContext->pBSPData->map_leafs[leafIndex];
|
|
if ( pLeaf->cluster >= 0 )
|
|
{
|
|
pContext->pLeafList[leafCount] = leafIndex;
|
|
leafCount++;
|
|
}
|
|
}
|
|
if ( nodeReadIndex == nodeWriteIndex )
|
|
return leafCount;
|
|
nodenum = nodeList[nodeReadIndex];
|
|
nodeReadIndex = (nodeReadIndex+1) & (NODELIST_MAX-1);
|
|
}
|
|
else
|
|
{
|
|
node = &pContext->pBSPData->map_rootnode[nodenum];
|
|
plane = node->plane;
|
|
float d0 = DotProduct( plane->normal, center ) - plane->dist;
|
|
float d1 = DotProductAbs( plane->normal, extents );
|
|
prev_topnode = nodenum;
|
|
if (d0 >= d1)
|
|
nodenum = node->children[0];
|
|
else if (d0 < -d1)
|
|
nodenum = node->children[1];
|
|
else
|
|
{ // go down both
|
|
if (pContext->leafTopNode == -1)
|
|
pContext->leafTopNode = nodenum;
|
|
nodenum = node->children[0];
|
|
nodeList[nodeWriteIndex] = node->children[1];
|
|
nodeWriteIndex = (nodeWriteIndex+1) & (NODELIST_MAX-1);
|
|
// check for overflow of the ring buffer
|
|
Assert(nodeWriteIndex != nodeReadIndex);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int CM_BoxClusters_headnode ( CCollisionBSPData *pBSPData, const Vector& mins, const Vector& maxs, int *list, int listsize, int nodenum, int *topnode)
|
|
{
|
|
leafnums_t context;
|
|
context.pLeafList = list;
|
|
context.leafTopNode = -1;
|
|
context.leafMaxCount = listsize;
|
|
Vector center = 0.5f * (mins + maxs);
|
|
Vector extents = maxs - center;
|
|
context.pBSPData = pBSPData;
|
|
|
|
int leafCount = CM_BoxClusters( &context, center, extents, nodenum );
|
|
if (topnode)
|
|
*topnode = context.leafTopNode;
|
|
|
|
return leafCount;
|
|
}
|
|
#endif
|
|
|
|
static int FASTCALL CM_BrushBoxContents( CCollisionBSPData *pBSPData, const Vector &vMins, const Vector &vMaxs, cbrush_t *pBrush )
|
|
{
|
|
if ( pBrush->IsBox())
|
|
{
|
|
cboxbrush_t *pBox = &pBSPData->map_boxbrushes[pBrush->GetBox()];
|
|
if ( !IsBoxIntersectingBox( vMins, vMaxs, pBox->mins, pBox->maxs ) )
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
if (!pBrush->numsides)
|
|
return 0;
|
|
Vector vCenter = 0.5f *(vMins + vMaxs);
|
|
Vector vExt = vMaxs - vCenter;
|
|
int i, j;
|
|
|
|
cplane_t *plane;
|
|
float dist;
|
|
Vector vOffset;
|
|
float d1;
|
|
cbrushside_t *side;
|
|
|
|
for (i=0 ; i<pBrush->numsides ; i++)
|
|
{
|
|
side = &pBSPData->map_brushsides[pBrush->firstbrushside+i];
|
|
plane = side->plane;
|
|
|
|
// FIXME: special case for axial
|
|
|
|
// general box case
|
|
|
|
// push the plane out appropriately for mins/maxs
|
|
|
|
// FIXME: use signbits into 8 way lookup for each mins/maxs
|
|
for (j=0 ; j<3 ; j++)
|
|
{
|
|
if (plane->normal[j] < 0)
|
|
vOffset[j] = vExt[j];
|
|
else
|
|
vOffset[j] = -vExt[j];
|
|
}
|
|
dist = DotProduct (vOffset, plane->normal);
|
|
dist = plane->dist - dist;
|
|
|
|
d1 = DotProduct (vCenter, plane->normal) - dist;
|
|
|
|
// if completely in front of face, no intersection
|
|
if (d1 > 0)
|
|
return 0;
|
|
|
|
}
|
|
}
|
|
|
|
// inside this brush
|
|
return pBrush->contents;
|
|
}
|
|
|
|
static int FASTCALL CM_BrushPointContents( CCollisionBSPData *pBSPData, const Vector &vPos, cbrush_t *pBrush )
|
|
{
|
|
if ( pBrush->IsBox())
|
|
{
|
|
cboxbrush_t *pBox = &pBSPData->map_boxbrushes[pBrush->GetBox()];
|
|
if ( !IsPointInBox( vPos, pBox->mins, pBox->maxs ) )
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
if (!pBrush->numsides)
|
|
return 0;
|
|
|
|
cplane_t *plane;
|
|
cbrushside_t *side;
|
|
|
|
for ( int i = 0 ; i < pBrush->numsides; i++ )
|
|
{
|
|
side = &pBSPData->map_brushsides[pBrush->firstbrushside+i];
|
|
plane = side->plane;
|
|
|
|
float flDist = DotProduct (vPos, plane->normal) - plane->dist;
|
|
|
|
// if completely in front of face, no intersection
|
|
if (flDist > 0)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// inside this brush
|
|
return pBrush->contents;
|
|
}
|
|
/*
|
|
==================
|
|
CM_PointContents
|
|
|
|
==================
|
|
*/
|
|
|
|
int CM_PointContents ( const Vector &p, int headnode)
|
|
{
|
|
int l;
|
|
|
|
// get the current collision bsp -- there is only one!
|
|
CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
|
|
if (!pBSPData->numnodes) // map not loaded
|
|
return 0;
|
|
|
|
l = CM_PointLeafnum_r (pBSPData, p, headnode);
|
|
|
|
cleaf_t *pLeaf = &pBSPData->map_leafs[l];
|
|
int nContents = pLeaf->contents;
|
|
for ( int i = 0; i < pLeaf->numleafbrushes; i++ )
|
|
{
|
|
int nBrush = pBSPData->map_leafbrushes[pLeaf->firstleafbrush + i];
|
|
cbrush_t * RESTRICT pBrush = &pBSPData->map_brushes[nBrush];
|
|
nContents |= CM_BrushPointContents( pBSPData, p, pBrush );
|
|
}
|
|
|
|
return nContents;
|
|
}
|
|
|
|
|
|
/*
|
|
==================
|
|
CM_TransformedPointContents
|
|
|
|
Handles offseting and rotation of the end points for moving and
|
|
rotating entities
|
|
==================
|
|
*/
|
|
int CM_TransformedPointContents ( const Vector& p, int headnode, const Vector& origin, QAngle const& angles)
|
|
{
|
|
Vector p_l;
|
|
Vector temp;
|
|
Vector forward, right, up;
|
|
int l;
|
|
|
|
// get the current collision bsp -- there is only one!
|
|
CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
|
|
// subtract origin offset
|
|
VectorSubtract (p, origin, p_l);
|
|
|
|
// rotate start and end into the models frame of reference
|
|
if ( angles[0] || angles[1] || angles[2] )
|
|
{
|
|
AngleVectors (angles, &forward, &right, &up);
|
|
|
|
VectorCopy (p_l, temp);
|
|
p_l[0] = DotProduct (temp, forward);
|
|
p_l[1] = -DotProduct (temp, right);
|
|
p_l[2] = DotProduct (temp, up);
|
|
}
|
|
|
|
l = CM_PointLeafnum_r (pBSPData, p_l, headnode);
|
|
|
|
return pBSPData->map_leafs[l].contents;
|
|
}
|
|
|
|
/*
|
|
===============================================================================
|
|
|
|
BOX TRACING
|
|
|
|
===============================================================================
|
|
*/
|
|
|
|
// Custom SIMD implementation for box brushes
|
|
|
|
const fltx4 Four_DistEpsilons={DIST_EPSILON,DIST_EPSILON,DIST_EPSILON,DIST_EPSILON};
|
|
const int32 ALIGN16 g_CubeFaceIndex0[4] ALIGN16_POST = {0,1,2,-1};
|
|
const int32 ALIGN16 g_CubeFaceIndex1[4] ALIGN16_POST = {3,4,5,-1};
|
|
bool IntersectRayWithBoxBrush( TraceInfo_t *pTraceInfo, const cbrush_t *pBrush, cboxbrush_t *pBox )
|
|
{
|
|
// Suppress floating-point exceptions in this function because invDelta's
|
|
// components can get arbitrarily large -- up to FLT_MAX -- and overflow
|
|
// when multiplied. Only applicable when FP_EXCEPTIONS_ENABLED is defined.
|
|
FPExceptionDisabler hideExceptions;
|
|
|
|
// Load the unaligned ray/box parameters into SIMD registers
|
|
fltx4 start = LoadAlignedSIMD(pTraceInfo->m_start.Base());
|
|
fltx4 extents = LoadAlignedSIMD(pTraceInfo->m_extents.Base());
|
|
fltx4 delta = LoadAlignedSIMD(pTraceInfo->m_delta.Base());
|
|
fltx4 boxMins = LoadAlignedSIMD( pBox->mins.Base() );
|
|
fltx4 boxMaxs = LoadAlignedSIMD( pBox->maxs.Base() );
|
|
|
|
// compute the mins/maxs of the box expanded by the ray extents
|
|
// relocate the problem so that the ray start is at the origin.
|
|
fltx4 offsetMins = SubSIMD(boxMins, start);
|
|
fltx4 offsetMaxs = SubSIMD(boxMaxs, start);
|
|
fltx4 offsetMinsExpanded = SubSIMD(offsetMins, extents);
|
|
fltx4 offsetMaxsExpanded = AddSIMD(offsetMaxs, extents);
|
|
|
|
// Check to see if both the origin (start point) and the end point (delta) are on the front side
|
|
// of any of the box sides - if so there can be no intersection
|
|
fltx4 startOutMins = CmpLtSIMD(Four_Zeros, offsetMinsExpanded);
|
|
fltx4 endOutMins = CmpLtSIMD(delta,offsetMinsExpanded);
|
|
fltx4 minsMask = AndSIMD( startOutMins, endOutMins );
|
|
fltx4 startOutMaxs = CmpGtSIMD(Four_Zeros, offsetMaxsExpanded);
|
|
fltx4 endOutMaxs = CmpGtSIMD(delta,offsetMaxsExpanded);
|
|
fltx4 maxsMask = AndSIMD( startOutMaxs, endOutMaxs );
|
|
if ( IsAnyNegative(SetWToZeroSIMD(OrSIMD(minsMask,maxsMask))))
|
|
return false;
|
|
|
|
fltx4 crossPlane = OrSIMD(XorSIMD(startOutMins,endOutMins), XorSIMD(startOutMaxs,endOutMaxs));
|
|
// now build the per-axis interval of t for intersections
|
|
fltx4 invDelta = LoadAlignedSIMD(pTraceInfo->m_invDelta.Base());
|
|
fltx4 tmins = MulSIMD( offsetMinsExpanded, invDelta );
|
|
fltx4 tmaxs = MulSIMD( offsetMaxsExpanded, invDelta );
|
|
// now sort the interval per axis
|
|
fltx4 mint = MinSIMD( tmins, tmaxs );
|
|
fltx4 maxt = MaxSIMD( tmins, tmaxs );
|
|
// only axes where we cross a plane are relevant
|
|
mint = MaskedAssign( crossPlane, mint, Four_Negative_FLT_MAX );
|
|
maxt = MaskedAssign( crossPlane, maxt, Four_FLT_MAX );
|
|
|
|
// now find the intersection of the intervals on all axes
|
|
fltx4 firstOut = FindLowestSIMD3(maxt);
|
|
fltx4 lastIn = FindHighestSIMD3(mint);
|
|
// NOTE: This is really a scalar quantity now [t0,t1] == [lastIn,firstOut]
|
|
firstOut = MinSIMD(firstOut, Four_Ones);
|
|
lastIn = MaxSIMD(lastIn, Four_Zeros);
|
|
|
|
// If the final interval is valid lastIn<firstOut, check for separation
|
|
fltx4 separation = CmpGtSIMD(lastIn, firstOut);
|
|
|
|
if ( IsAllZeros(separation) )
|
|
{
|
|
bool bStartOut = IsAnyNegative(SetWToZeroSIMD(OrSIMD(startOutMins,startOutMaxs)));
|
|
offsetMinsExpanded = SubSIMD(offsetMinsExpanded, Four_DistEpsilons);
|
|
offsetMaxsExpanded = AddSIMD(offsetMaxsExpanded, Four_DistEpsilons);
|
|
|
|
tmins = MulSIMD( offsetMinsExpanded, invDelta );
|
|
tmaxs = MulSIMD( offsetMaxsExpanded, invDelta );
|
|
|
|
fltx4 minface0 = LoadAlignedSIMD( (float *) g_CubeFaceIndex0 );
|
|
fltx4 minface1 = LoadAlignedSIMD( (float *) g_CubeFaceIndex1 );
|
|
fltx4 faceMask = CmpLeSIMD( tmins, tmaxs );
|
|
mint = MinSIMD( tmins, tmaxs );
|
|
maxt = MaxSIMD( tmins, tmaxs );
|
|
fltx4 faceId = MaskedAssign( faceMask, minface0, minface1 );
|
|
// only axes where we cross a plane are relevant
|
|
mint = MaskedAssign( crossPlane, mint, Four_Negative_FLT_MAX );
|
|
maxt = MaskedAssign( crossPlane, maxt, Four_FLT_MAX );
|
|
|
|
fltx4 firstOutTmp = FindLowestSIMD3(maxt);
|
|
|
|
// implement FindHighest of 3, but use intermediate masks to find the
|
|
// corresponding index in faceId to the highest at the same time
|
|
fltx4 compareOne = RotateLeft( mint );
|
|
faceMask = CmpGtSIMD(mint, compareOne);
|
|
// compareOne is [y,z,G,x]
|
|
fltx4 max_xy = MaxSIMD( mint, compareOne );
|
|
fltx4 faceRot = RotateLeft(faceId);
|
|
fltx4 faceId_xy = MaskedAssign(faceMask, faceId, faceRot);
|
|
// max_xy is [max(x,y), ... ]
|
|
compareOne = RotateLeft2( mint );
|
|
faceRot = RotateLeft2(faceId);
|
|
// compareOne is [z, G, x, y]
|
|
faceMask = CmpGtSIMD( max_xy, compareOne );
|
|
fltx4 max_xyz = MaxSIMD( max_xy, compareOne );
|
|
faceId = MaskedAssign( faceMask, faceId_xy, faceRot );
|
|
fltx4 lastInTmp = SplatXSIMD( max_xyz );
|
|
|
|
firstOut = MinSIMD(firstOutTmp, Four_Ones);
|
|
lastIn = MaxSIMD(lastInTmp, Four_Zeros);
|
|
separation = CmpGtSIMD(lastIn, firstOut);
|
|
Assert(IsAllZeros(separation));
|
|
if ( IsAllZeros(separation) )
|
|
{
|
|
uint32 faceIndex = SubInt(faceId, 0);
|
|
Assert(faceIndex<6);
|
|
float t1 = SubFloat(lastIn,0);
|
|
trace_t * RESTRICT pTrace = &pTraceInfo->m_trace;
|
|
|
|
// this condition is copied from the brush case to avoid hitting an assert and
|
|
// overwriting a previous start solid with a new shorter fraction
|
|
if ( bStartOut && pTraceInfo->m_ispoint && pTrace->fractionleftsolid > t1 )
|
|
{
|
|
bStartOut = false;
|
|
}
|
|
|
|
if ( !bStartOut )
|
|
{
|
|
float t2 = SubFloat(firstOut,0);
|
|
pTrace->startsolid = true;
|
|
pTrace->contents = pBrush->contents;
|
|
if ( t2 >= 1.0f )
|
|
{
|
|
pTrace->allsolid = true;
|
|
pTrace->fraction = 0.0f;
|
|
}
|
|
else if ( t2 > pTrace->fractionleftsolid )
|
|
{
|
|
pTrace->fractionleftsolid = t2;
|
|
if (pTrace->fraction <= t2)
|
|
{
|
|
pTrace->fraction = 1.0f;
|
|
pTrace->surface = pTraceInfo->m_pBSPData->nullsurface;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
static const int signbits[3]={1,2,4};
|
|
if ( t1 < pTrace->fraction )
|
|
{
|
|
pTraceInfo->m_bDispHit = false;
|
|
pTrace->fraction = t1;
|
|
pTrace->plane.normal = vec3_origin;
|
|
pTrace->surface = *pTraceInfo->m_pBSPData->GetSurfaceAtIndex( pBox->surfaceIndex[faceIndex] );
|
|
if ( faceIndex >= 3 )
|
|
{
|
|
faceIndex -= 3;
|
|
pTrace->plane.dist = pBox->maxs[faceIndex];
|
|
pTrace->plane.normal[faceIndex] = 1.0f;
|
|
pTrace->plane.signbits = 0;
|
|
}
|
|
else
|
|
{
|
|
pTrace->plane.dist = -pBox->mins[faceIndex];
|
|
pTrace->plane.normal[faceIndex] = -1.0f;
|
|
pTrace->plane.signbits = signbits[faceIndex];
|
|
}
|
|
pTrace->plane.type = faceIndex;
|
|
pTrace->contents = pBrush->contents;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// slightly different version of the above. This folds in more of the trace_t output because CM_ComputeTraceEndpts() isn't called after this
|
|
// so this routine needs to properly compute start/end points and fractions in all cases
|
|
bool IntersectRayWithBox( const Ray_t &ray, const VectorAligned &inInvDelta, const VectorAligned &inBoxMins, const VectorAligned &inBoxMaxs, trace_t *RESTRICT pTrace )
|
|
{
|
|
// mark trace as not hitting
|
|
pTrace->startsolid = false;
|
|
pTrace->allsolid = false;
|
|
pTrace->fraction = 1.0f;
|
|
|
|
// Load the unaligned ray/box parameters into SIMD registers
|
|
fltx4 start = LoadAlignedSIMD(ray.m_Start.Base());
|
|
fltx4 extents = LoadAlignedSIMD(ray.m_Extents.Base());
|
|
fltx4 delta = LoadAlignedSIMD(ray.m_Delta.Base());
|
|
fltx4 boxMins = LoadAlignedSIMD( inBoxMins.Base() );
|
|
fltx4 boxMaxs = LoadAlignedSIMD( inBoxMaxs.Base() );
|
|
|
|
// compute the mins/maxs of the box expanded by the ray extents
|
|
// relocate the problem so that the ray start is at the origin.
|
|
fltx4 offsetMins = SubSIMD(boxMins, start);
|
|
fltx4 offsetMaxs = SubSIMD(boxMaxs, start);
|
|
fltx4 offsetMinsExpanded = SubSIMD(offsetMins, extents);
|
|
fltx4 offsetMaxsExpanded = AddSIMD(offsetMaxs, extents);
|
|
|
|
// Check to see if both the origin (start point) and the end point (delta) are on the front side
|
|
// of any of the box sides - if so there can be no intersection
|
|
fltx4 startOutMins = CmpLtSIMD(Four_Zeros, offsetMinsExpanded);
|
|
fltx4 endOutMins = CmpLtSIMD(delta,offsetMinsExpanded);
|
|
fltx4 minsMask = AndSIMD( startOutMins, endOutMins );
|
|
fltx4 startOutMaxs = CmpGtSIMD(Four_Zeros, offsetMaxsExpanded);
|
|
fltx4 endOutMaxs = CmpGtSIMD(delta,offsetMaxsExpanded);
|
|
fltx4 maxsMask = AndSIMD( startOutMaxs, endOutMaxs );
|
|
if ( IsAnyNegative(SetWToZeroSIMD(OrSIMD(minsMask,maxsMask))))
|
|
return false;
|
|
|
|
fltx4 crossPlane = OrSIMD(XorSIMD(startOutMins,endOutMins), XorSIMD(startOutMaxs,endOutMaxs));
|
|
// now build the per-axis interval of t for intersections
|
|
fltx4 invDelta = LoadAlignedSIMD(inInvDelta.Base());
|
|
fltx4 tmins = MulSIMD( offsetMinsExpanded, invDelta );
|
|
fltx4 tmaxs = MulSIMD( offsetMaxsExpanded, invDelta );
|
|
// now sort the interval per axis
|
|
fltx4 mint = MinSIMD( tmins, tmaxs );
|
|
fltx4 maxt = MaxSIMD( tmins, tmaxs );
|
|
// only axes where we cross a plane are relevant
|
|
mint = MaskedAssign( crossPlane, mint, Four_Negative_FLT_MAX );
|
|
maxt = MaskedAssign( crossPlane, maxt, Four_FLT_MAX );
|
|
|
|
// now find the intersection of the intervals on all axes
|
|
fltx4 firstOut = FindLowestSIMD3(maxt);
|
|
fltx4 lastIn = FindHighestSIMD3(mint);
|
|
// NOTE: This is really a scalar quantity now [t0,t1] == [lastIn,firstOut]
|
|
firstOut = MinSIMD(firstOut, Four_Ones);
|
|
lastIn = MaxSIMD(lastIn, Four_Zeros);
|
|
|
|
// If the final interval is valid lastIn<firstOut, check for separation
|
|
fltx4 separation = CmpGtSIMD(lastIn, firstOut);
|
|
|
|
if ( IsAllZeros(separation) )
|
|
{
|
|
bool bStartOut = IsAnyNegative(SetWToZeroSIMD(OrSIMD(startOutMins,startOutMaxs)));
|
|
offsetMinsExpanded = SubSIMD(offsetMinsExpanded, Four_DistEpsilons);
|
|
offsetMaxsExpanded = AddSIMD(offsetMaxsExpanded, Four_DistEpsilons);
|
|
|
|
tmins = MulSIMD( offsetMinsExpanded, invDelta );
|
|
tmaxs = MulSIMD( offsetMaxsExpanded, invDelta );
|
|
|
|
fltx4 minface0 = LoadAlignedSIMD( (float *) g_CubeFaceIndex0 );
|
|
fltx4 minface1 = LoadAlignedSIMD( (float *) g_CubeFaceIndex1 );
|
|
fltx4 faceMask = CmpLeSIMD( tmins, tmaxs );
|
|
mint = MinSIMD( tmins, tmaxs );
|
|
maxt = MaxSIMD( tmins, tmaxs );
|
|
fltx4 faceId = MaskedAssign( faceMask, minface0, minface1 );
|
|
// only axes where we cross a plane are relevant
|
|
mint = MaskedAssign( crossPlane, mint, Four_Negative_FLT_MAX );
|
|
maxt = MaskedAssign( crossPlane, maxt, Four_FLT_MAX );
|
|
|
|
fltx4 firstOutTmp = FindLowestSIMD3(maxt);
|
|
|
|
//fltx4 lastInTmp = FindHighestSIMD3(mint);
|
|
// implement FindHighest of 3, but use intermediate masks to find the
|
|
// corresponding index in faceId to the highest at the same time
|
|
fltx4 compareOne = RotateLeft( mint );
|
|
faceMask = CmpGtSIMD(mint, compareOne);
|
|
// compareOne is [y,z,G,x]
|
|
fltx4 max_xy = MaxSIMD( mint, compareOne );
|
|
fltx4 faceRot = RotateLeft(faceId);
|
|
fltx4 faceId_xy = MaskedAssign(faceMask, faceId, faceRot);
|
|
// max_xy is [max(x,y), ... ]
|
|
compareOne = RotateLeft2( mint );
|
|
faceRot = RotateLeft2(faceId);
|
|
// compareOne is [z, G, x, y]
|
|
faceMask = CmpGtSIMD( max_xy, compareOne );
|
|
fltx4 max_xyz = MaxSIMD( max_xy, compareOne );
|
|
faceId = MaskedAssign( faceMask, faceId_xy, faceRot );
|
|
fltx4 lastInTmp = SplatXSIMD( max_xyz );
|
|
|
|
firstOut = MinSIMD(firstOutTmp, Four_Ones);
|
|
lastIn = MaxSIMD(lastInTmp, Four_Zeros);
|
|
separation = CmpGtSIMD(lastIn, firstOut);
|
|
Assert(IsAllZeros(separation));
|
|
if ( IsAllZeros(separation) )
|
|
{
|
|
uint32 faceIndex = SubInt(faceId, 0);
|
|
Assert(faceIndex<6);
|
|
float t1 = SubFloat(lastIn,0);
|
|
|
|
// this condition is copied from the brush case to avoid hitting an assert and
|
|
// overwriting a previous start solid with a new shorter fraction
|
|
if ( bStartOut && ray.m_IsRay && pTrace->fractionleftsolid > t1 )
|
|
{
|
|
bStartOut = false;
|
|
}
|
|
|
|
if ( !bStartOut )
|
|
{
|
|
float t2 = SubFloat(firstOut,0);
|
|
pTrace->startsolid = true;
|
|
pTrace->contents = CONTENTS_SOLID;
|
|
pTrace->fraction = 0.0f;
|
|
pTrace->startpos = ray.m_Start + ray.m_StartOffset;
|
|
pTrace->endpos = pTrace->startpos;
|
|
if ( t2 >= 1.0f )
|
|
{
|
|
pTrace->allsolid = true;
|
|
}
|
|
else if ( t2 > pTrace->fractionleftsolid )
|
|
{
|
|
pTrace->fractionleftsolid = t2;
|
|
pTrace->startpos += ray.m_Delta * pTrace->fractionleftsolid;
|
|
}
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
static const int signbits[3]={1,2,4};
|
|
if ( t1 <= 1.0f )
|
|
{
|
|
pTrace->fraction = t1;
|
|
pTrace->plane.normal = vec3_origin;
|
|
if ( faceIndex >= 3 )
|
|
{
|
|
faceIndex -= 3;
|
|
pTrace->plane.dist = inBoxMaxs[faceIndex];
|
|
pTrace->plane.normal[faceIndex] = 1.0f;
|
|
pTrace->plane.signbits = 0;
|
|
}
|
|
else
|
|
{
|
|
pTrace->plane.dist = -inBoxMins[faceIndex];
|
|
pTrace->plane.normal[faceIndex] = -1.0f;
|
|
pTrace->plane.signbits = signbits[faceIndex];
|
|
}
|
|
pTrace->plane.type = faceIndex;
|
|
pTrace->contents = CONTENTS_SOLID;
|
|
Vector startVec;
|
|
VectorAdd( ray.m_Start, ray.m_StartOffset, startVec );
|
|
|
|
if (pTrace->fraction == 1)
|
|
{
|
|
VectorAdd( startVec, ray.m_Delta, pTrace->endpos);
|
|
}
|
|
else
|
|
{
|
|
VectorMA( startVec, pTrace->fraction, ray.m_Delta, pTrace->endpos );
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
================
|
|
CM_ClipBoxToBrush
|
|
================
|
|
*/
|
|
template <bool IS_POINT>
|
|
void FASTCALL CM_ClipBoxToBrush( TraceInfo_t * RESTRICT pTraceInfo, const cbrush_t * RESTRICT brush )
|
|
{
|
|
if ( brush->IsBox() )
|
|
{
|
|
cboxbrush_t *pBox = &pTraceInfo->m_pBSPData->map_boxbrushes[brush->GetBox()];
|
|
IntersectRayWithBoxBrush( pTraceInfo, brush, pBox );
|
|
return;
|
|
}
|
|
if (!brush->numsides)
|
|
return;
|
|
|
|
trace_t * RESTRICT trace = &pTraceInfo->m_trace;
|
|
const Vector& p1 = pTraceInfo->m_start;
|
|
const Vector& p2= pTraceInfo->m_end;
|
|
int brushContents = brush->contents;
|
|
|
|
#ifdef COUNT_COLLISIONS
|
|
g_CollisionCounts.m_BrushTraces++;
|
|
#endif
|
|
|
|
float enterfrac = NEVER_UPDATED;
|
|
float leavefrac = 1.f;
|
|
|
|
bool getout = false;
|
|
bool startout = false;
|
|
cbrushside_t* leadside = NULL;
|
|
|
|
float dist;
|
|
|
|
cbrushside_t * RESTRICT side = &pTraceInfo->m_pBSPData->map_brushsides[brush->firstbrushside];
|
|
for ( const cbrushside_t * const sidelimit = side + brush->numsides; side < sidelimit; side++ )
|
|
{
|
|
cplane_t *plane = side->plane;
|
|
const Vector &planeNormal = plane->normal;
|
|
|
|
if (!IS_POINT)
|
|
{
|
|
// general box case
|
|
// push the plane out apropriately for mins/maxs
|
|
|
|
dist = DotProductAbs( planeNormal, pTraceInfo->m_extents );
|
|
dist = plane->dist + dist;
|
|
}
|
|
else
|
|
{
|
|
// special point case
|
|
dist = plane->dist;
|
|
// don't trace rays against bevel planes
|
|
if ( side->bBevel )
|
|
continue;
|
|
}
|
|
|
|
float d1 = DotProduct (p1, planeNormal) - dist;
|
|
float d2 = DotProduct (p2, planeNormal) - dist;
|
|
|
|
// if completely in front of face, no intersection
|
|
if( d1 > 0.f )
|
|
{
|
|
startout = true;
|
|
|
|
// d1 > 0.f && d2 > 0.f
|
|
if( d2 > 0.f )
|
|
return;
|
|
|
|
}
|
|
else
|
|
{
|
|
// d1 <= 0.f && d2 <= 0.f
|
|
if( d2 <= 0.f )
|
|
continue;
|
|
|
|
// d2 > 0.f
|
|
getout = true;
|
|
}
|
|
|
|
// crosses face
|
|
if (d1 > d2)
|
|
{ // enter
|
|
// NOTE: This could be negative if d1 is less than the epsilon.
|
|
// If the trace is short (d1-d2 is small) then it could produce a large
|
|
// negative fraction.
|
|
float f = (d1-DIST_EPSILON);
|
|
if ( f < 0.f )
|
|
f = 0.f;
|
|
f = f / (d1-d2);
|
|
if (f > enterfrac)
|
|
{
|
|
enterfrac = f;
|
|
leadside = side;
|
|
}
|
|
}
|
|
else
|
|
{ // leave
|
|
float f = (d1+DIST_EPSILON) / (d1-d2);
|
|
if (f < leavefrac)
|
|
leavefrac = f;
|
|
}
|
|
}
|
|
|
|
// when this happens, we entered the brush *after* leaving the previous brush.
|
|
// Therefore, we're still outside!
|
|
|
|
// NOTE: We only do this test against points because fractionleftsolid is
|
|
// not possible to compute for brush sweeps without a *lot* more computation
|
|
// So, client code will never get fractionleftsolid for box sweeps
|
|
if (IS_POINT && startout)
|
|
{
|
|
// Add a little sludge. The sludge should already be in the fractionleftsolid
|
|
// (for all intents and purposes is a leavefrac value) and enterfrac values.
|
|
// Both of these values have +/- DIST_EPSILON values calculated in. Thus, I
|
|
// think the test should be against "0.0." If we experience new "left solid"
|
|
// problems you may want to take a closer look here!
|
|
// if ((trace->fractionleftsolid - enterfrac) > -1e-6)
|
|
if ((trace->fractionleftsolid - enterfrac) > 0.0f )
|
|
startout = false;
|
|
}
|
|
|
|
if (!startout)
|
|
{ // original point was inside brush
|
|
trace->startsolid = true;
|
|
// return starting contents
|
|
trace->contents = brushContents;
|
|
|
|
if (!getout)
|
|
{
|
|
trace->allsolid = true;
|
|
trace->fraction = 0.0f;
|
|
trace->fractionleftsolid = 1.0f;
|
|
}
|
|
else
|
|
{
|
|
// if leavefrac == 1, this means it's never been updated or we're in allsolid
|
|
// the allsolid case was handled above
|
|
if ((leavefrac != 1) && (leavefrac > trace->fractionleftsolid))
|
|
{
|
|
trace->fractionleftsolid = leavefrac;
|
|
|
|
// This could occur if a previous trace didn't start us in solid
|
|
if (trace->fraction <= leavefrac)
|
|
{
|
|
trace->fraction = 1.0f;
|
|
trace->surface = pTraceInfo->m_pBSPData->nullsurface;
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// We haven't hit anything at all until we've left...
|
|
if (enterfrac < leavefrac)
|
|
{
|
|
if (enterfrac > NEVER_UPDATED && enterfrac < trace->fraction)
|
|
{
|
|
// WE HIT SOMETHING!!!!!
|
|
if (enterfrac < 0)
|
|
enterfrac = 0;
|
|
trace->fraction = enterfrac;
|
|
pTraceInfo->m_bDispHit = false;
|
|
trace->plane = *(leadside->plane);
|
|
trace->surface = *pTraceInfo->m_pBSPData->GetSurfaceAtIndex( leadside->surfaceIndex );
|
|
trace->contents = brushContents;
|
|
}
|
|
}
|
|
}
|
|
|
|
inline bool IsTraceBoxIntersectingBoxBrush( TraceInfo_t *pTraceInfo, cboxbrush_t *pBox )
|
|
{
|
|
fltx4 start = LoadAlignedSIMD(pTraceInfo->m_start.Base());
|
|
fltx4 mins = LoadAlignedSIMD(pTraceInfo->m_mins.Base());
|
|
fltx4 maxs = LoadAlignedSIMD(pTraceInfo->m_maxs.Base());
|
|
|
|
fltx4 boxMins = LoadAlignedSIMD( pBox->mins.Base() );
|
|
fltx4 boxMaxs = LoadAlignedSIMD( pBox->maxs.Base() );
|
|
fltx4 offsetMins = AddSIMD(mins, start);
|
|
fltx4 offsetMaxs = AddSIMD(maxs,start);
|
|
fltx4 minsOut = MaxSIMD(boxMins, offsetMins);
|
|
fltx4 maxsOut = MinSIMD(boxMaxs, offsetMaxs);
|
|
fltx4 separated = CmpGtSIMD(minsOut, maxsOut);
|
|
fltx4 sep3 = SetWToZeroSIMD(separated);
|
|
return IsAllZeros(sep3);
|
|
}
|
|
/*
|
|
================
|
|
CM_TestBoxInBrush
|
|
================
|
|
*/
|
|
static void FASTCALL CM_TestBoxInBrush( TraceInfo_t *pTraceInfo, const cbrush_t *brush )
|
|
{
|
|
if ( brush->IsBox())
|
|
{
|
|
cboxbrush_t *pBox = &pTraceInfo->m_pBSPData->map_boxbrushes[brush->GetBox()];
|
|
if ( !IsTraceBoxIntersectingBoxBrush( pTraceInfo, pBox ) )
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
if (!brush->numsides)
|
|
return;
|
|
const Vector& mins = pTraceInfo->m_mins;
|
|
const Vector& maxs = pTraceInfo->m_maxs;
|
|
const Vector& p1 = pTraceInfo->m_start;
|
|
int i, j;
|
|
|
|
cplane_t *plane;
|
|
float dist;
|
|
Vector ofs(0,0,0);
|
|
float d1;
|
|
cbrushside_t *side;
|
|
|
|
for (i=0 ; i<brush->numsides ; i++)
|
|
{
|
|
side = &pTraceInfo->m_pBSPData->map_brushsides[brush->firstbrushside+i];
|
|
plane = side->plane;
|
|
|
|
// FIXME: special case for axial
|
|
|
|
// general box case
|
|
|
|
// push the plane out appropriately for mins/maxs
|
|
|
|
// FIXME: use signbits into 8 way lookup for each mins/maxs
|
|
for (j=0 ; j<3 ; j++)
|
|
{
|
|
if (plane->normal[j] < 0)
|
|
ofs[j] = maxs[j];
|
|
else
|
|
ofs[j] = mins[j];
|
|
}
|
|
dist = DotProduct (ofs, plane->normal);
|
|
dist = plane->dist - dist;
|
|
|
|
d1 = DotProduct (p1, plane->normal) - dist;
|
|
|
|
// if completely in front of face, no intersection
|
|
if (d1 > 0)
|
|
return;
|
|
|
|
}
|
|
}
|
|
|
|
// inside this brush
|
|
trace_t *trace = &pTraceInfo->m_trace;
|
|
trace->startsolid = trace->allsolid = true;
|
|
trace->fraction = 0;
|
|
trace->fractionleftsolid = 1.0f;
|
|
trace->contents = brush->contents;
|
|
}
|
|
|
|
#if defined(_X360)
|
|
#define PREFETCH_ELEMENT(ofs,base) __dcbt(ofs,(void*)base)
|
|
#else
|
|
#define PREFETCH_ELEMENT(a,b)
|
|
#endif
|
|
/*
|
|
================
|
|
CM_TraceToLeaf
|
|
================
|
|
*/
|
|
|
|
template <bool IS_POINT>
|
|
void FASTCALL CM_TraceToLeaf( TraceInfo_t * RESTRICT pTraceInfo, int ndxLeaf, float startFrac, float endFrac )
|
|
{
|
|
VPROF("CM_TraceToLeaf");
|
|
// get the leaf
|
|
cleaf_t * RESTRICT pLeaf = &pTraceInfo->m_pBSPData->map_leafs[ndxLeaf];
|
|
|
|
//
|
|
// trace ray/box sweep against all brushes in this leaf
|
|
//
|
|
const int numleafbrushes = pLeaf->numleafbrushes;
|
|
const int lastleafbrush = pLeaf->firstleafbrush + numleafbrushes;
|
|
const CRangeValidatedArray<unsigned short> &map_leafbrushes = pTraceInfo->m_pBSPData->map_leafbrushes;
|
|
CRangeValidatedArray<cbrush_t> & map_brushes = pTraceInfo->m_pBSPData->map_brushes;
|
|
TraceCounter_t * RESTRICT pCounters = pTraceInfo->GetBrushCounters();
|
|
TraceCounter_t count = pTraceInfo->GetCount();
|
|
for( int ndxLeafBrush = pLeaf->firstleafbrush; ndxLeafBrush < lastleafbrush; ndxLeafBrush++ )
|
|
{
|
|
// get the current brush
|
|
int ndxBrush = map_leafbrushes[ndxLeafBrush];
|
|
|
|
cbrush_t * RESTRICT pBrush = &map_brushes[ndxBrush];
|
|
|
|
// make sure we only check this brush once per trace/stab
|
|
if ( !pTraceInfo->Visit( pBrush, ndxBrush, count, pCounters ) )
|
|
continue;
|
|
|
|
const int traceContents = pTraceInfo->m_contents;
|
|
const int releventContents = ( pBrush->contents & traceContents );
|
|
|
|
// only collide with objects you are interested in
|
|
if( !releventContents )
|
|
continue;
|
|
|
|
// Many traces rely on CONTENTS_OPAQUE always being hit, even if it is nodraw. AI blocklos brushes
|
|
// need this, for instance. CS and Terror visibility checks don't want this behavior, since
|
|
// blocklight brushes also are CONTENTS_OPAQUE and SURF_NODRAW, and are actually in the playable
|
|
// area in several maps.
|
|
// NOTE: This is no longer true - no traces should rely on hitting CONTENTS_OPAQUE unless they
|
|
// actually want to hit blocklight brushes. No other brushes are marked with those bits
|
|
// so it should be renamed CONTENTS_BLOCKLIGHT. CONTENTS_BLOCKLOS has its own field now
|
|
// so there is no reason to ignore nodraw opaques since you can merely remove CONTENTS_OPAQUE to
|
|
// get that behavior
|
|
if ( releventContents == CONTENTS_OPAQUE && (traceContents & CONTENTS_IGNORE_NODRAW_OPAQUE) )
|
|
{
|
|
// if the only reason we hit this brush is because it is opaque, make sure it isn't nodraw
|
|
bool isNoDraw = false;
|
|
|
|
if ( pBrush->IsBox())
|
|
{
|
|
cboxbrush_t *pBox = &pTraceInfo->m_pBSPData->map_boxbrushes[pBrush->GetBox()];
|
|
for (int i=0 ; i<6 && !isNoDraw ;i++)
|
|
{
|
|
csurface_t *surface = pTraceInfo->m_pBSPData->GetSurfaceAtIndex( pBox->surfaceIndex[i] );
|
|
if ( surface->flags & SURF_NODRAW )
|
|
{
|
|
isNoDraw = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cbrushside_t *side = &pTraceInfo->m_pBSPData->map_brushsides[pBrush->firstbrushside];
|
|
for (int i=0 ; i<pBrush->numsides && !isNoDraw ;i++, side++)
|
|
{
|
|
csurface_t *surface = pTraceInfo->m_pBSPData->GetSurfaceAtIndex( side->surfaceIndex );
|
|
if ( surface->flags & SURF_NODRAW )
|
|
{
|
|
isNoDraw = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( isNoDraw )
|
|
{
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// trace against the brush and find impact point -- if any?
|
|
// NOTE: pTraceInfo->m_trace.fraction == 0.0f only when trace starts inside of a brush!
|
|
CM_ClipBoxToBrush<IS_POINT>( pTraceInfo, pBrush );
|
|
if( !pTraceInfo->m_trace.fraction )
|
|
return;
|
|
}
|
|
|
|
// TODO: this may be redundant
|
|
if( pTraceInfo->m_trace.startsolid )
|
|
return;
|
|
|
|
// Collide (test) against displacement surfaces in this leaf.
|
|
if( pLeaf->dispCount )
|
|
{
|
|
VPROF("CM_TraceToLeafDisps");
|
|
//
|
|
// trace ray/swept box against all displacement surfaces in this leaf
|
|
//
|
|
pCounters = pTraceInfo->GetDispCounters();
|
|
count = pTraceInfo->GetCount();
|
|
|
|
if (IsX360())
|
|
{
|
|
// set up some relatively constant variables we'll use in the loop below
|
|
fltx4 traceStart = LoadAlignedSIMD(pTraceInfo->m_start.Base());
|
|
fltx4 traceDelta = LoadAlignedSIMD(pTraceInfo->m_delta.Base());
|
|
fltx4 traceInvDelta = LoadAlignedSIMD(pTraceInfo->m_invDelta.Base());
|
|
static const fltx4 vecEpsilon = {DISPCOLL_DIST_EPSILON,DISPCOLL_DIST_EPSILON,DISPCOLL_DIST_EPSILON,DISPCOLL_DIST_EPSILON};
|
|
// only used in !IS_POINT version:
|
|
fltx4 extents;
|
|
if (!IS_POINT)
|
|
{
|
|
extents = LoadAlignedSIMD(pTraceInfo->m_extents.Base());
|
|
}
|
|
|
|
// TODO: this loop probably ought to be unrolled so that we can make a more efficient
|
|
// job of intersecting rays against boxes. The simple SIMD version used here,
|
|
// though about 6x faster than the fpu version, is slower still than intersecting
|
|
// against four boxes simultaneously.
|
|
for( int i = 0; i < pLeaf->dispCount; i++ )
|
|
{
|
|
int dispIndex = pTraceInfo->m_pBSPData->map_dispList[pLeaf->dispListStart + i];
|
|
alignedbbox_t * RESTRICT pDispBounds = &g_pDispBounds[dispIndex];
|
|
|
|
// only collide with objects you are interested in
|
|
if( !( pDispBounds->GetContents() & pTraceInfo->m_contents ) )
|
|
continue;
|
|
|
|
if( pTraceInfo->m_isswept )
|
|
{
|
|
// make sure we only check this brush once per trace/stab
|
|
if ( !pTraceInfo->Visit( pDispBounds->GetCounter(), count, pCounters ) )
|
|
continue;
|
|
}
|
|
|
|
if ( IS_POINT )
|
|
{
|
|
if (!IsBoxIntersectingRay( LoadAlignedSIMD(pDispBounds->mins.Base()), LoadAlignedSIMD(pDispBounds->maxs.Base()),
|
|
traceStart, traceDelta, traceInvDelta, vecEpsilon ))
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
fltx4 mins = SubSIMD(LoadAlignedSIMD(pDispBounds->mins.Base()),extents);
|
|
fltx4 maxs = AddSIMD(LoadAlignedSIMD(pDispBounds->maxs.Base()),extents);
|
|
if (!IsBoxIntersectingRay( mins, maxs,
|
|
traceStart, traceDelta, traceInvDelta, vecEpsilon ))
|
|
continue;
|
|
}
|
|
|
|
CDispCollTree * RESTRICT pDispTree = &g_pDispCollTrees[dispIndex];
|
|
CM_TraceToDispTree<IS_POINT>( pTraceInfo, pDispTree, startFrac, endFrac );
|
|
if( !pTraceInfo->m_trace.fraction )
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// utterly nonoptimal FPU pathway
|
|
for( int i = 0; i < pLeaf->dispCount; i++ )
|
|
{
|
|
int dispIndex = pTraceInfo->m_pBSPData->map_dispList[pLeaf->dispListStart + i];
|
|
alignedbbox_t * RESTRICT pDispBounds = &g_pDispBounds[dispIndex];
|
|
|
|
// only collide with objects you are interested in
|
|
if( !( pDispBounds->GetContents() & pTraceInfo->m_contents ) )
|
|
continue;
|
|
|
|
if( pTraceInfo->m_isswept )
|
|
{
|
|
// make sure we only check this brush once per trace/stab
|
|
if ( !pTraceInfo->Visit( pDispBounds->GetCounter(), count, pCounters ) )
|
|
continue;
|
|
}
|
|
|
|
if ( IS_POINT && !IsBoxIntersectingRay( pDispBounds->mins, pDispBounds->maxs, pTraceInfo->m_start, pTraceInfo->m_delta, pTraceInfo->m_invDelta, DISPCOLL_DIST_EPSILON ) )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if ( !IS_POINT && !IsBoxIntersectingRay( pDispBounds->mins - pTraceInfo->m_extents, pDispBounds->maxs + pTraceInfo->m_extents,
|
|
pTraceInfo->m_start, pTraceInfo->m_delta, pTraceInfo->m_invDelta, DISPCOLL_DIST_EPSILON ) )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
CDispCollTree * RESTRICT pDispTree = &g_pDispCollTrees[dispIndex];
|
|
CM_TraceToDispTree<IS_POINT>( pTraceInfo, pDispTree, startFrac, endFrac );
|
|
if( !pTraceInfo->m_trace.fraction )
|
|
break;
|
|
}
|
|
}
|
|
|
|
CM_PostTraceToDispTree( pTraceInfo );
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
CM_TestInLeaf
|
|
================
|
|
*/
|
|
static void FASTCALL CM_TestInLeaf( TraceInfo_t *pTraceInfo, int ndxLeaf )
|
|
{
|
|
// get the leaf
|
|
cleaf_t *pLeaf = &pTraceInfo->m_pBSPData->map_leafs[ndxLeaf];
|
|
|
|
//
|
|
// trace ray/box sweep against all brushes in this leaf
|
|
//
|
|
TraceCounter_t *pCounters = pTraceInfo->GetBrushCounters();
|
|
TraceCounter_t count = pTraceInfo->GetCount();
|
|
for( int ndxLeafBrush = 0; ndxLeafBrush < pLeaf->numleafbrushes; ndxLeafBrush++ )
|
|
{
|
|
// get the current brush
|
|
int ndxBrush = pTraceInfo->m_pBSPData->map_leafbrushes[pLeaf->firstleafbrush+ndxLeafBrush];
|
|
|
|
cbrush_t *pBrush = &pTraceInfo->m_pBSPData->map_brushes[ndxBrush];
|
|
|
|
// make sure we only check this brush once per trace/stab
|
|
if ( !pTraceInfo->Visit( pBrush, ndxBrush, count, pCounters ) )
|
|
continue;
|
|
|
|
// only collide with objects you are interested in
|
|
if( !( pBrush->contents & pTraceInfo->m_contents ) )
|
|
continue;
|
|
|
|
//
|
|
// test to see if the point/box is inside of any solid
|
|
// NOTE: pTraceInfo->m_trace.fraction == 0.0f only when trace starts inside of a brush!
|
|
//
|
|
CM_TestBoxInBrush( pTraceInfo, pBrush );
|
|
if( !pTraceInfo->m_trace.fraction )
|
|
return;
|
|
}
|
|
|
|
// TODO: this may be redundant
|
|
if( pTraceInfo->m_trace.startsolid )
|
|
return;
|
|
|
|
// if there are no displacement surfaces in this leaf -- we are done testing
|
|
if( pLeaf->dispCount )
|
|
{
|
|
// test to see if the point/box is inside of any of the displacement surface
|
|
CM_TestInDispTree( pTraceInfo, pLeaf, pTraceInfo->m_start, pTraceInfo->m_mins, pTraceInfo->m_maxs, pTraceInfo->m_contents, &pTraceInfo->m_trace );
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Computes the ray endpoints given a trace.
|
|
//-----------------------------------------------------------------------------
|
|
static inline void CM_ComputeTraceEndpoints( const Ray_t& ray, trace_t& tr )
|
|
{
|
|
// The ray start is the center of the extents; compute the actual start
|
|
Vector start;
|
|
VectorAdd( ray.m_Start, ray.m_StartOffset, start );
|
|
|
|
if (tr.fraction == 1)
|
|
VectorAdd(start, ray.m_Delta, tr.endpos);
|
|
else
|
|
VectorMA( start, tr.fraction, ray.m_Delta, tr.endpos );
|
|
|
|
if (tr.fractionleftsolid == 0)
|
|
{
|
|
VectorCopy (start, tr.startpos);
|
|
}
|
|
else
|
|
{
|
|
if (tr.fractionleftsolid == 1.0f)
|
|
{
|
|
tr.startsolid = tr.allsolid = 1;
|
|
tr.fraction = 0.0f;
|
|
VectorCopy( start, tr.endpos );
|
|
}
|
|
|
|
VectorMA( start, tr.fractionleftsolid, ray.m_Delta, tr.startpos );
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: Get a list of leaves for a trace.
|
|
//-----------------------------------------------------------------------------
|
|
void CM_RayLeafnums_r( const Ray_t &ray, CCollisionBSPData *pBSPData, int iNode,
|
|
float p1f, float p2f, const Vector &vecPoint1, const Vector &vecPoint2,
|
|
int *pLeafList, int nMaxLeafCount, int &nLeafCount )
|
|
{
|
|
cnode_t *pNode = NULL;
|
|
cplane_t *pPlane = NULL;
|
|
float flDist1 = 0.0f, flDist2 = 0.0f;
|
|
float flOffset = 0.0f;
|
|
float flDist;
|
|
float flFrac1, flFrac2;
|
|
int nSide;
|
|
float flMid;
|
|
Vector vecMid;
|
|
|
|
// A quick check so we don't flood the message on overflow - or keep testing beyond our means!
|
|
if ( nLeafCount >= nMaxLeafCount )
|
|
return;
|
|
|
|
// Find the point distances to the seperating plane and the offset for the size of the box.
|
|
// NJS: Hoisted loop invariant comparison to pTraceInfo->m_ispoint
|
|
if( ray.m_IsRay )
|
|
{
|
|
while( iNode >= 0 )
|
|
{
|
|
pNode = pBSPData->map_rootnode + iNode;
|
|
pPlane = pNode->plane;
|
|
|
|
if ( pPlane->type < 3 )
|
|
{
|
|
flDist1 = vecPoint1[pPlane->type] - pPlane->dist;
|
|
flDist2 = vecPoint2[pPlane->type] - pPlane->dist;
|
|
flOffset = ray.m_Extents[pPlane->type];
|
|
}
|
|
else
|
|
{
|
|
flDist1 = DotProduct( pPlane->normal, vecPoint1 ) - pPlane->dist;
|
|
flDist2 = DotProduct( pPlane->normal, vecPoint2 ) - pPlane->dist;
|
|
flOffset = 0.0f;
|
|
}
|
|
|
|
// See which sides we need to consider
|
|
if ( flDist1 > flOffset && flDist2 > flOffset )
|
|
{
|
|
iNode = pNode->children[0];
|
|
continue;
|
|
}
|
|
|
|
if ( flDist1 < -flOffset && flDist2 < -flOffset )
|
|
{
|
|
iNode = pNode->children[1];
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
while( iNode >= 0 )
|
|
{
|
|
pNode = pBSPData->map_rootnode + iNode;
|
|
pPlane = pNode->plane;
|
|
|
|
if ( pPlane->type < 3 )
|
|
{
|
|
flDist1 = vecPoint1[pPlane->type] - pPlane->dist;
|
|
flDist2 = vecPoint2[pPlane->type] - pPlane->dist;
|
|
flOffset = ray.m_Extents[pPlane->type];
|
|
}
|
|
else
|
|
{
|
|
flDist1 = DotProduct( pPlane->normal, vecPoint1 ) - pPlane->dist;
|
|
flDist2 = DotProduct( pPlane->normal, vecPoint2 ) - pPlane->dist;
|
|
flOffset = fabs( ray.m_Extents[0] * pPlane->normal[0] ) +
|
|
fabs( ray.m_Extents[1] * pPlane->normal[1] ) +
|
|
fabs( ray.m_Extents[2] * pPlane->normal[2] );
|
|
}
|
|
|
|
// See which sides we need to consider
|
|
if ( flDist1 > flOffset && flDist2 > flOffset )
|
|
{
|
|
iNode = pNode->children[0];
|
|
continue;
|
|
}
|
|
|
|
if ( flDist1 < -flOffset && flDist2 < -flOffset )
|
|
{
|
|
iNode = pNode->children[1];
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If < 0, we are in a leaf node.
|
|
if ( iNode < 0 )
|
|
{
|
|
if ( nLeafCount < nMaxLeafCount )
|
|
{
|
|
pLeafList[nLeafCount] = -1 - iNode;
|
|
nLeafCount++;
|
|
}
|
|
else
|
|
{
|
|
DevMsg( 1, "CM_RayLeafnums_r: Max leaf count along ray exceeded!\n" );
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// Put the crosspoint DIST_EPSILON pixels on the near side.
|
|
if ( flDist1 < flDist2 )
|
|
{
|
|
flDist = 1.0 / ( flDist1 - flDist2 );
|
|
nSide = 1;
|
|
flFrac2 = ( flDist1 + flOffset + DIST_EPSILON ) * flDist;
|
|
flFrac1 = ( flDist1 - flOffset - DIST_EPSILON ) * flDist;
|
|
}
|
|
else if ( flDist1 > flDist2 )
|
|
{
|
|
flDist = 1.0 / ( flDist1-flDist2 );
|
|
nSide = 0;
|
|
flFrac2 = ( flDist1 - flOffset - DIST_EPSILON ) * flDist;
|
|
flFrac1 = ( flDist1 + flOffset + DIST_EPSILON ) * flDist;
|
|
}
|
|
else
|
|
{
|
|
nSide = 0;
|
|
flFrac1 = 1.0f;
|
|
flFrac2 = 0.0f;
|
|
}
|
|
|
|
// Move up to the node
|
|
flFrac1 = clamp( flFrac1, 0.0f, 1.0f );
|
|
flMid = p1f + ( p2f - p1f ) * flFrac1;
|
|
VectorLerp( vecPoint1, vecPoint2, flFrac1, vecMid );
|
|
CM_RayLeafnums_r( ray, pBSPData, pNode->children[nSide], p1f, flMid, vecPoint1, vecMid, pLeafList, nMaxLeafCount, nLeafCount );
|
|
|
|
// Go past the node
|
|
flFrac2 = clamp( flFrac2, 0.0f, 1.0f );
|
|
flMid = p1f + ( p2f - p1f ) * flFrac2;
|
|
VectorLerp( vecPoint1, vecPoint2, flFrac2, vecMid );
|
|
CM_RayLeafnums_r( ray, pBSPData, pNode->children[nSide^1], flMid, p2f, vecMid, vecPoint2, pLeafList, nMaxLeafCount, nLeafCount );
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
void CM_RayLeafnums( const Ray_t &ray, int *pLeafList, int nMaxLeafCount, int &nLeafCount )
|
|
{
|
|
CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
if ( !pBSPData->numnodes )
|
|
return;
|
|
|
|
Vector vecEnd;
|
|
VectorAdd( ray.m_Start, ray.m_Delta, vecEnd );
|
|
CM_RayLeafnums_r( ray, pBSPData, 0/*headnode*/, 0.0f, 1.0f, ray.m_Start, vecEnd, pLeafList, nMaxLeafCount, nLeafCount );
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
==================
|
|
CM_RecursiveHullCheck
|
|
|
|
==================
|
|
Attempt to do whatever is nessecary to get this function to unroll at least once
|
|
*/
|
|
template <bool IS_POINT>
|
|
static void FASTCALL CM_RecursiveHullCheckImpl( TraceInfo_t *pTraceInfo, int num, const float p1f, const float p2f, const Vector& p1, const Vector& p2)
|
|
{
|
|
if (pTraceInfo->m_trace.fraction <= p1f)
|
|
return; // already hit something nearer
|
|
|
|
cnode_t *node = NULL;
|
|
cplane_t *plane;
|
|
float t1 = 0, t2 = 0, offset = 0;
|
|
float frac, frac2;
|
|
float idist;
|
|
Vector mid;
|
|
int side;
|
|
float midf;
|
|
|
|
|
|
// find the point distances to the seperating plane
|
|
// and the offset for the size of the box
|
|
|
|
while( num >= 0 )
|
|
{
|
|
node = pTraceInfo->m_pBSPData->map_rootnode + num;
|
|
plane = node->plane;
|
|
byte type = plane->type;
|
|
float dist = plane->dist;
|
|
|
|
if (type < 3)
|
|
{
|
|
t1 = p1[type] - dist;
|
|
t2 = p2[type] - dist;
|
|
offset = pTraceInfo->m_extents[type];
|
|
}
|
|
else
|
|
{
|
|
t1 = DotProduct (plane->normal, p1) - dist;
|
|
t2 = DotProduct (plane->normal, p2) - dist;
|
|
if( IS_POINT )
|
|
{
|
|
offset = 0;
|
|
}
|
|
else
|
|
{
|
|
offset = fabsf(pTraceInfo->m_extents[0]*plane->normal[0]) +
|
|
fabsf(pTraceInfo->m_extents[1]*plane->normal[1]) +
|
|
fabsf(pTraceInfo->m_extents[2]*plane->normal[2]);
|
|
}
|
|
}
|
|
|
|
// see which sides we need to consider
|
|
if (t1 > offset && t2 > offset )
|
|
// if (t1 >= offset && t2 >= offset)
|
|
{
|
|
num = node->children[0];
|
|
continue;
|
|
}
|
|
if (t1 < -offset && t2 < -offset)
|
|
{
|
|
num = node->children[1];
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// if < 0, we are in a leaf node
|
|
if (num < 0)
|
|
{
|
|
CM_TraceToLeaf<IS_POINT>(pTraceInfo, -1-num, p1f, p2f);
|
|
return;
|
|
}
|
|
|
|
// put the crosspoint DIST_EPSILON pixels on the near side
|
|
if (t1 < t2)
|
|
{
|
|
idist = 1.0/(t1-t2);
|
|
side = 1;
|
|
frac2 = (t1 + offset + DIST_EPSILON)*idist;
|
|
frac = (t1 - offset - DIST_EPSILON)*idist;
|
|
}
|
|
else if (t1 > t2)
|
|
{
|
|
idist = 1.0/(t1-t2);
|
|
side = 0;
|
|
frac2 = (t1 - offset - DIST_EPSILON)*idist;
|
|
frac = (t1 + offset + DIST_EPSILON)*idist;
|
|
}
|
|
else
|
|
{
|
|
side = 0;
|
|
frac = 1;
|
|
frac2 = 0;
|
|
}
|
|
|
|
// move up to the node
|
|
frac = clamp( frac, 0.f, 1.f );
|
|
midf = p1f + (p2f - p1f)*frac;
|
|
VectorLerp( p1, p2, frac, mid );
|
|
|
|
CM_RecursiveHullCheckImpl<IS_POINT>(pTraceInfo, node->children[side], p1f, midf, p1, mid);
|
|
|
|
// go past the node
|
|
frac2 = clamp( frac2, 0.f, 1.f );
|
|
midf = p1f + (p2f - p1f)*frac2;
|
|
VectorLerp( p1, p2, frac2, mid );
|
|
|
|
CM_RecursiveHullCheckImpl<IS_POINT>(pTraceInfo, node->children[side^1], midf, p2f, mid, p2);
|
|
}
|
|
|
|
void FASTCALL CM_RecursiveHullCheck ( TraceInfo_t *pTraceInfo, int num, const float p1f, const float p2f )
|
|
{
|
|
const Vector& p1 = pTraceInfo->m_start;
|
|
const Vector& p2 = pTraceInfo->m_end;
|
|
|
|
if( pTraceInfo->m_ispoint )
|
|
{
|
|
CM_RecursiveHullCheckImpl<true>( pTraceInfo, num, p1f, p2f, p1, p2);
|
|
}
|
|
else
|
|
{
|
|
CM_RecursiveHullCheckImpl<false>( pTraceInfo, num, p1f, p2f, p1, p2);
|
|
}
|
|
}
|
|
|
|
void CM_ClearTrace( trace_t *trace )
|
|
{
|
|
memset( trace, 0, sizeof(*trace));
|
|
trace->fraction = 1.f;
|
|
trace->fractionleftsolid = 0;
|
|
trace->surface = CCollisionBSPData::nullsurface;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// The following versions use ray... gradually I'm gonna remove other versions
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Test an unswept box
|
|
//-----------------------------------------------------------------------------
|
|
|
|
static inline void CM_UnsweptBoxTrace( TraceInfo_t *pTraceInfo, const Ray_t& ray, int headnode, int brushmask )
|
|
{
|
|
int leafs[1024];
|
|
int i, numleafs;
|
|
|
|
leafnums_t context;
|
|
context.pLeafList = leafs;
|
|
context.leafTopNode = -1;
|
|
context.leafMaxCount = ARRAYSIZE(leafs);
|
|
context.pBSPData = pTraceInfo->m_pBSPData;
|
|
|
|
bool bFoundNonSolidLeaf = false;
|
|
numleafs = CM_BoxLeafnums ( context, ray.m_Start, ray.m_Extents+Vector(1,1,1), headnode);
|
|
for (i=0 ; i<numleafs ; i++)
|
|
{
|
|
if ((pTraceInfo->m_pBSPData->map_leafs[leafs[i]].contents & CONTENTS_SOLID) == 0)
|
|
{
|
|
bFoundNonSolidLeaf = true;
|
|
}
|
|
|
|
CM_TestInLeaf ( pTraceInfo, leafs[i] );
|
|
if (pTraceInfo->m_trace.allsolid)
|
|
break;
|
|
}
|
|
|
|
if (!bFoundNonSolidLeaf)
|
|
{
|
|
pTraceInfo->m_trace.allsolid = pTraceInfo->m_trace.startsolid = 1;
|
|
pTraceInfo->m_trace.fraction = 0.0f;
|
|
pTraceInfo->m_trace.fractionleftsolid = 1.0f;
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: Ray/Hull trace against the world without the RecursiveHullTrace
|
|
//-----------------------------------------------------------------------------
|
|
void CM_BoxTraceAgainstLeafList( const Ray_t &ray, int *pLeafList, int nLeafCount, int nBrushMask,
|
|
bool bComputeEndpoint, trace_t &trace )
|
|
{
|
|
// For multi-check avoidance.
|
|
TraceInfo_t *pTraceInfo = BeginTrace();
|
|
|
|
// Setup trace data.
|
|
CM_ClearTrace( &pTraceInfo->m_trace );
|
|
|
|
// Get the collision bsp tree.
|
|
pTraceInfo->m_pBSPData = GetCollisionBSPData();
|
|
|
|
// Check if the map is loaded.
|
|
if ( !pTraceInfo->m_pBSPData->numnodes )
|
|
{
|
|
trace = pTraceInfo->m_trace;
|
|
EndTrace( pTraceInfo );
|
|
return;
|
|
}
|
|
|
|
// Setup global trace data. (This is nasty! I hate this.)
|
|
pTraceInfo->m_bDispHit = false;
|
|
pTraceInfo->m_DispStabDir.Init();
|
|
pTraceInfo->m_contents = nBrushMask;
|
|
VectorCopy( ray.m_Start, pTraceInfo->m_start );
|
|
VectorAdd( ray.m_Start, ray.m_Delta, pTraceInfo->m_end );
|
|
VectorMultiply( ray.m_Extents, -1.0f, pTraceInfo->m_mins );
|
|
VectorCopy( ray.m_Extents, pTraceInfo->m_maxs );
|
|
VectorCopy( ray.m_Extents, pTraceInfo->m_extents );
|
|
pTraceInfo->m_delta = ray.m_Delta;
|
|
pTraceInfo->m_invDelta = ray.InvDelta();
|
|
pTraceInfo->m_ispoint = ray.m_IsRay;
|
|
pTraceInfo->m_isswept = ray.m_IsSwept;
|
|
|
|
if ( !ray.m_IsSwept )
|
|
{
|
|
Vector vecBoxMin( ( ray.m_Start.x - ray.m_Extents.x - 1 ), ( ray.m_Start.y - ray.m_Extents.y - 1 ), ( ray.m_Start.z - ray.m_Extents.z - 1 ) );
|
|
Vector vecBoxMax( ( ray.m_Start.x + ray.m_Extents.x + 1 ), ( ray.m_Start.y + ray.m_Extents.y + 1 ), ( ray.m_Start.z + ray.m_Extents.z + 1 ) );
|
|
|
|
bool bFoundNonSolidLeaf = false;
|
|
for ( int iLeaf = 0; iLeaf < nLeafCount; ++iLeaf )
|
|
{
|
|
if ( ( pTraceInfo->m_pBSPData->map_leafs[pLeafList[iLeaf]].contents & CONTENTS_SOLID ) == 0 )
|
|
{
|
|
bFoundNonSolidLeaf = true;
|
|
}
|
|
|
|
CM_TestInLeaf( pTraceInfo, pLeafList[iLeaf] );
|
|
if ( pTraceInfo->m_trace.allsolid )
|
|
break;
|
|
}
|
|
|
|
if ( !bFoundNonSolidLeaf )
|
|
{
|
|
pTraceInfo->m_trace.allsolid = pTraceInfo->m_trace.startsolid = 1;
|
|
pTraceInfo->m_trace.fraction = 0.0f;
|
|
pTraceInfo->m_trace.fractionleftsolid = 1.0f;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for ( int iLeaf = 0; iLeaf < nLeafCount; ++iLeaf )
|
|
{
|
|
// NOTE: startFrac and endFrac are not really used.
|
|
if ( pTraceInfo->m_ispoint )
|
|
CM_TraceToLeaf<true>( pTraceInfo, pLeafList[iLeaf], 1.0f, 1.0f );
|
|
else
|
|
CM_TraceToLeaf<false>( pTraceInfo, pLeafList[iLeaf], 1.0f, 1.0f );
|
|
}
|
|
}
|
|
|
|
// Compute the trace start and end points.
|
|
if ( bComputeEndpoint )
|
|
{
|
|
CM_ComputeTraceEndpoints( ray, pTraceInfo->m_trace );
|
|
}
|
|
|
|
// Copy off the results
|
|
trace = pTraceInfo->m_trace;
|
|
EndTrace( pTraceInfo );
|
|
|
|
Assert( !ray.m_IsRay || trace.allsolid || ( trace.fraction >= trace.fractionleftsolid ) );
|
|
}
|
|
|
|
void CM_BoxTrace( const Ray_t& ray, int headnode, int brushmask, bool computeEndpt, trace_t& tr )
|
|
{
|
|
VPROF("BoxTrace");
|
|
// for multi-check avoidance
|
|
TraceInfo_t *pTraceInfo = BeginTrace();
|
|
|
|
#ifdef COUNT_COLLISIONS
|
|
// for statistics, may be zeroed
|
|
g_CollisionCounts.m_Traces++;
|
|
#endif
|
|
|
|
// fill in a default trace
|
|
CM_ClearTrace( &pTraceInfo->m_trace );
|
|
|
|
pTraceInfo->m_pBSPData = GetCollisionBSPData();
|
|
|
|
// check if the map is not loaded
|
|
if (!pTraceInfo->m_pBSPData->numnodes)
|
|
{
|
|
tr = pTraceInfo->m_trace;
|
|
EndTrace( pTraceInfo );
|
|
return;
|
|
}
|
|
|
|
pTraceInfo->m_bDispHit = false;
|
|
pTraceInfo->m_DispStabDir.Init();
|
|
pTraceInfo->m_contents = brushmask;
|
|
VectorCopy (ray.m_Start, pTraceInfo->m_start);
|
|
VectorAdd (ray.m_Start, ray.m_Delta, pTraceInfo->m_end);
|
|
VectorMultiply (ray.m_Extents, -1.0f, pTraceInfo->m_mins);
|
|
VectorCopy (ray.m_Extents, pTraceInfo->m_maxs);
|
|
VectorCopy (ray.m_Extents, pTraceInfo->m_extents);
|
|
pTraceInfo->m_delta = ray.m_Delta;
|
|
pTraceInfo->m_invDelta = ray.InvDelta();
|
|
pTraceInfo->m_ispoint = ray.m_IsRay;
|
|
pTraceInfo->m_isswept = ray.m_IsSwept;
|
|
|
|
if (!ray.m_IsSwept)
|
|
{
|
|
// check for position test special case
|
|
CM_UnsweptBoxTrace( pTraceInfo, ray, headnode, brushmask );
|
|
}
|
|
else
|
|
{
|
|
// general sweeping through world
|
|
CM_RecursiveHullCheck( pTraceInfo, headnode, 0, 1 );
|
|
}
|
|
// Compute the trace start + end points
|
|
if (computeEndpt)
|
|
{
|
|
CM_ComputeTraceEndpoints( ray, pTraceInfo->m_trace );
|
|
}
|
|
|
|
// Copy off the results
|
|
tr = pTraceInfo->m_trace;
|
|
EndTrace( pTraceInfo );
|
|
Assert( !ray.m_IsRay || tr.allsolid || (tr.fraction >= tr.fractionleftsolid) );
|
|
}
|
|
|
|
|
|
void CM_TransformedBoxTrace( const Ray_t& ray, int headnode, int brushmask,
|
|
const Vector& origin, QAngle const& angles, trace_t& tr )
|
|
{
|
|
matrix3x4_t localToWorld;
|
|
Ray_t ray_l;
|
|
|
|
// subtract origin offset
|
|
VectorCopy( ray.m_StartOffset, ray_l.m_StartOffset );
|
|
VectorCopy( ray.m_Extents, ray_l.m_Extents );
|
|
|
|
// Are we rotated?
|
|
bool rotated = (angles[0] || angles[1] || angles[2]);
|
|
|
|
// rotate start and end into the models frame of reference
|
|
if (rotated)
|
|
{
|
|
// NOTE: In this case, the bbox is rotated into the space of the BSP as well
|
|
// to insure consistency at all orientations, we must rotate the origin of the ray
|
|
// and reapply the offset to the center of the box. That way all traces with the
|
|
// same box centering will have the same transformation into local space
|
|
Vector worldOrigin = ray.m_Start + ray.m_StartOffset;
|
|
AngleMatrix( angles, origin, localToWorld );
|
|
VectorIRotate( ray.m_Delta, localToWorld, ray_l.m_Delta );
|
|
VectorITransform( worldOrigin, localToWorld, ray_l.m_Start );
|
|
ray_l.m_Start -= ray.m_StartOffset;
|
|
}
|
|
else
|
|
{
|
|
VectorSubtract( ray.m_Start, origin, ray_l.m_Start );
|
|
VectorCopy( ray.m_Delta, ray_l.m_Delta );
|
|
}
|
|
|
|
ray_l.m_IsRay = ray.m_IsRay;
|
|
ray_l.m_IsSwept = ray.m_IsSwept;
|
|
|
|
// sweep the box through the model, don't compute endpoints
|
|
CM_BoxTrace( ray_l, headnode, brushmask, false, tr );
|
|
|
|
// If we hit, gotta fix up the normal...
|
|
if (( tr.fraction != 1 ) && rotated )
|
|
{
|
|
// transform the normal from the local space of this entity to world space
|
|
Vector temp;
|
|
VectorCopy (tr.plane.normal, temp);
|
|
VectorRotate( temp, localToWorld, tr.plane.normal );
|
|
}
|
|
|
|
CM_ComputeTraceEndpoints( ray, tr );
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
===============================================================================
|
|
|
|
PVS / PAS
|
|
|
|
===============================================================================
|
|
*/
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
// Input : *pBSPData -
|
|
// *out -
|
|
//-----------------------------------------------------------------------------
|
|
void CM_NullVis( CCollisionBSPData *pBSPData, byte *out )
|
|
{
|
|
int numClusterBytes = (pBSPData->numclusters+7)>>3;
|
|
byte *out_p = out;
|
|
|
|
while (numClusterBytes)
|
|
{
|
|
*out_p++ = 0xff;
|
|
numClusterBytes--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
===================
|
|
CM_DecompressVis
|
|
===================
|
|
*/
|
|
void CM_DecompressVis( CCollisionBSPData *pBSPData, int cluster, int visType, byte *out )
|
|
{
|
|
int c;
|
|
byte *out_p;
|
|
int numClusterBytes;
|
|
|
|
if ( !pBSPData )
|
|
{
|
|
Assert( false ); // Shouldn't ever happen.
|
|
}
|
|
|
|
if ( cluster > pBSPData->numclusters || cluster < 0 )
|
|
{
|
|
// This can happen if this is called while the level is loading. See Map_VisCurrentCluster.
|
|
CM_NullVis( pBSPData, out );
|
|
return;
|
|
}
|
|
|
|
// no vis info, so make all visible
|
|
if ( !pBSPData->numvisibility || !pBSPData->map_vis )
|
|
{
|
|
CM_NullVis( pBSPData, out );
|
|
return;
|
|
}
|
|
|
|
byte *in = ((byte *)pBSPData->map_vis) + pBSPData->map_vis->bitofs[cluster][visType];
|
|
numClusterBytes = (pBSPData->numclusters+7)>>3;
|
|
out_p = out;
|
|
|
|
// no vis info, so make all visible
|
|
if ( !in )
|
|
{
|
|
CM_NullVis( pBSPData, out );
|
|
return;
|
|
}
|
|
|
|
do
|
|
{
|
|
if (*in)
|
|
{
|
|
*out_p++ = *in++;
|
|
continue;
|
|
}
|
|
|
|
c = in[1];
|
|
in += 2;
|
|
if ((out_p - out) + c > numClusterBytes)
|
|
{
|
|
c = numClusterBytes - (out_p - out);
|
|
ConMsg( "warning: Vis decompression overrun\n" );
|
|
}
|
|
while (c)
|
|
{
|
|
*out_p++ = 0;
|
|
c--;
|
|
}
|
|
} while (out_p - out < numClusterBytes);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: Decompress the RLE bitstring for PVS or PAS of one cluster
|
|
// Input : *dest - buffer to store the decompressed data
|
|
// cluster - index of cluster of interest
|
|
// visType - DVIS_PAS or DVIS_PAS
|
|
// Output : byte * - pointer to the filled buffer
|
|
//-----------------------------------------------------------------------------
|
|
const byte *CM_Vis( byte *dest, int destlen, int cluster, int visType )
|
|
{
|
|
// get the current collision bsp -- there is only one!
|
|
CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
|
|
if ( !dest || visType > 2 || visType < 0 )
|
|
{
|
|
Sys_Error( "CM_Vis: error");
|
|
return NULL;
|
|
}
|
|
|
|
if ( cluster == -1 )
|
|
{
|
|
int len = (pBSPData->numclusters+7)>>3;
|
|
if ( len > destlen )
|
|
{
|
|
Sys_Error( "CM_Vis: buffer not big enough (%i but need %i)\n",
|
|
destlen, len );
|
|
}
|
|
memset( dest, 0, (pBSPData->numclusters+7)>>3 );
|
|
}
|
|
else
|
|
{
|
|
CM_DecompressVis( pBSPData, cluster, visType, dest );
|
|
}
|
|
|
|
return dest;
|
|
}
|
|
|
|
static byte pvsrow[MAX_MAP_LEAFS/8];
|
|
|
|
int CM_ClusterPVSSize()
|
|
{
|
|
return sizeof( pvsrow );
|
|
}
|
|
|
|
const byte *CM_ClusterPVS (int cluster)
|
|
{
|
|
return CM_Vis( pvsrow, CM_ClusterPVSSize(), cluster, DVIS_PVS );
|
|
}
|
|
|
|
/*
|
|
===============================================================================
|
|
|
|
AREAPORTALS
|
|
|
|
===============================================================================
|
|
*/
|
|
|
|
void FloodArea_r (CCollisionBSPData *pBSPData, carea_t *area, int floodnum)
|
|
{
|
|
int i;
|
|
dareaportal_t *p;
|
|
|
|
if (area->floodvalid == pBSPData->floodvalid)
|
|
{
|
|
if (area->floodnum == floodnum)
|
|
return;
|
|
Sys_Error( "FloodArea_r: reflooded");
|
|
}
|
|
|
|
area->floodnum = floodnum;
|
|
area->floodvalid = pBSPData->floodvalid;
|
|
p = &pBSPData->map_areaportals[area->firstareaportal];
|
|
for (i=0 ; i<area->numareaportals ; i++, p++)
|
|
{
|
|
if (pBSPData->portalopen[p->m_PortalKey])
|
|
{
|
|
FloodArea_r (pBSPData, &pBSPData->map_areas[p->otherarea], floodnum);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
====================
|
|
FloodAreaConnections
|
|
|
|
|
|
====================
|
|
*/
|
|
void FloodAreaConnections ( CCollisionBSPData *pBSPData )
|
|
{
|
|
int i;
|
|
carea_t *area;
|
|
int floodnum;
|
|
|
|
// all current floods are now invalid
|
|
pBSPData->floodvalid++;
|
|
floodnum = 0;
|
|
|
|
// area 0 is not used
|
|
for (i=1 ; i<pBSPData->numareas ; i++)
|
|
{
|
|
area = &pBSPData->map_areas[i];
|
|
if (area->floodvalid == pBSPData->floodvalid)
|
|
continue; // already flooded into
|
|
floodnum++;
|
|
FloodArea_r (pBSPData, area, floodnum);
|
|
}
|
|
|
|
}
|
|
|
|
void CM_SetAreaPortalState( int portalnum, int isOpen )
|
|
{
|
|
// get the current collision bsp -- there is only one!
|
|
CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
|
|
// Portalnums in the BSP file are 1-based instead of 0-based
|
|
if (portalnum > pBSPData->numareaportals)
|
|
{
|
|
Sys_Error( "portalnum > numareaportals");
|
|
}
|
|
|
|
pBSPData->portalopen[portalnum] = (isOpen != 0);
|
|
FloodAreaConnections (pBSPData);
|
|
}
|
|
|
|
void CM_SetAreaPortalStates( const int *portalnums, const int *isOpen, int nPortals )
|
|
{
|
|
if ( nPortals == 0 )
|
|
return;
|
|
|
|
CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
|
|
// get the current collision bsp -- there is only one!
|
|
for ( int i=0; i < nPortals; i++ )
|
|
{
|
|
// Portalnums in the BSP file are 1-based instead of 0-based
|
|
if (portalnums[i] > pBSPData->numareaportals)
|
|
Sys_Error( "portalnum > numareaportals");
|
|
|
|
pBSPData->portalopen[portalnums[i]] = (isOpen[i] != 0);
|
|
}
|
|
|
|
FloodAreaConnections( pBSPData );
|
|
}
|
|
|
|
bool CM_AreasConnected (int area1, int area2)
|
|
{
|
|
// get the current collision bsp -- there is only one!
|
|
CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
|
|
if (map_noareas.GetInt())
|
|
return true;
|
|
|
|
if (area1 >= pBSPData->numareas || area2 >= pBSPData->numareas)
|
|
{
|
|
Sys_Error( "area(1==%i, 2==%i) >= numareas (%i): Check if engine->ResetPVS() was called from ClientSetupVisibility", area1, area2, pBSPData->numareas );
|
|
}
|
|
|
|
return (pBSPData->map_areas[area1].floodnum == pBSPData->map_areas[area2].floodnum);
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
CM_WriteAreaBits
|
|
|
|
Writes a length byte followed by a bit vector of all the areas
|
|
that area in the same flood as the area parameter
|
|
|
|
This is used by the client refreshes to cull visibility
|
|
=================
|
|
*/
|
|
int CM_WriteAreaBits ( byte *buffer, int buflen, int area )
|
|
{
|
|
int i;
|
|
int floodnum;
|
|
int bytes;
|
|
|
|
// get the current collision bsp -- there is only one!
|
|
CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
|
|
bytes = (pBSPData->numareas+7)>>3;
|
|
|
|
if ( map_noareas.GetInt() )
|
|
{
|
|
// for debugging, send everything
|
|
Q_memset( buffer, 255, 3 );
|
|
}
|
|
else
|
|
{
|
|
if ( buflen < 32 )
|
|
{
|
|
Sys_Error( "CM_WriteAreaBits with buffer size < 32\n" );
|
|
}
|
|
|
|
Q_memset( buffer, 0, 32 );
|
|
|
|
floodnum = pBSPData->map_areas[area].floodnum;
|
|
for (i=0 ; i<pBSPData->numareas ; i++)
|
|
{
|
|
if (pBSPData->map_areas[i].floodnum == floodnum || !area)
|
|
buffer[i>>3] |= 1<<(i&7);
|
|
}
|
|
}
|
|
|
|
return bytes;
|
|
}
|
|
|
|
|
|
bool CM_GetAreaPortalPlane( const Vector &vViewOrigin, int portalKey, VPlane *pPlane )
|
|
{
|
|
CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
|
|
// First, find the leaf and area the viewer is in.
|
|
int iLeaf = CM_PointLeafnum( vViewOrigin );
|
|
if( iLeaf < 0 || iLeaf >= pBSPData->numleafs )
|
|
return false;
|
|
|
|
int iArea = pBSPData->map_leafs[iLeaf].area;
|
|
if( iArea < 0 || iArea >= pBSPData->numareas )
|
|
return false;
|
|
|
|
carea_t *pArea = &pBSPData->map_areas[iArea];
|
|
for( int i=0; i < pArea->numareaportals; i++ )
|
|
{
|
|
dareaportal_t *pPortal = &pBSPData->map_areaportals[pArea->firstareaportal + i];
|
|
|
|
if( pPortal->m_PortalKey == portalKey )
|
|
{
|
|
cplane_t *pMapPlane = &pBSPData->map_planes[pPortal->planenum];
|
|
pPlane->m_Normal = pMapPlane->normal;
|
|
pPlane->m_Dist = pMapPlane->dist;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
=============
|
|
CM_HeadnodeVisible
|
|
|
|
Returns true if any leaf under headnode has a cluster that
|
|
is potentially visible
|
|
=============
|
|
*/
|
|
bool CM_HeadnodeVisible (int nodenum, const byte *visbits, int vissize )
|
|
{
|
|
int leafnum;
|
|
int cluster;
|
|
cnode_t *node;
|
|
|
|
// get the current collision bsp -- there is only one!
|
|
CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
|
|
if (nodenum < 0)
|
|
{
|
|
leafnum = -1-nodenum;
|
|
cluster = pBSPData->map_leafs[leafnum].cluster;
|
|
if (cluster == -1)
|
|
return false;
|
|
if (visbits[cluster>>3] & (1<<(cluster&7)))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
node = &pBSPData->map_rootnode[nodenum];
|
|
if (CM_HeadnodeVisible(node->children[0], visbits, vissize ))
|
|
return true;
|
|
return CM_HeadnodeVisible(node->children[1], visbits, vissize );
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: returns true if the box is in a cluster that is visible in the visbits
|
|
// Input : mins - box extents
|
|
// maxs -
|
|
// *visbits - pvs or pas of some cluster
|
|
// Output : true if visible, false if not
|
|
//-----------------------------------------------------------------------------
|
|
#define MAX_BOX_LEAVES 256
|
|
int CM_BoxVisible( const Vector& mins, const Vector& maxs, const byte *visbits, int vissize )
|
|
{
|
|
int leafList[MAX_BOX_LEAVES];
|
|
int topnode;
|
|
|
|
// FIXME: Could save a loop here by traversing the tree in this routine like the code above
|
|
int count = CM_BoxLeafnums( mins, maxs, leafList, MAX_BOX_LEAVES, &topnode );
|
|
for ( int i = 0; i < count; i++ )
|
|
{
|
|
int cluster = CM_LeafCluster( leafList[i] );
|
|
int offset = cluster>>3;
|
|
|
|
if( offset == -1 )
|
|
return true;
|
|
|
|
if ( offset > vissize )
|
|
{
|
|
Sys_Error( "CM_BoxVisible: cluster %i, offset %i out of bounds %i\n", cluster, offset, vissize );
|
|
}
|
|
|
|
if (visbits[cluster>>3] & (1<<(cluster&7)))
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Returns the world-space center of an entity
|
|
//-----------------------------------------------------------------------------
|
|
void CM_WorldSpaceCenter( ICollideable *pCollideable, Vector *pCenter )
|
|
{
|
|
Vector vecLocalCenter;
|
|
VectorAdd( pCollideable->OBBMins(), pCollideable->OBBMaxs(), vecLocalCenter );
|
|
vecLocalCenter *= 0.5f;
|
|
|
|
if ( ( pCollideable->GetCollisionAngles() == vec3_angle ) || ( vecLocalCenter == vec3_origin ) )
|
|
{
|
|
VectorAdd( vecLocalCenter, pCollideable->GetCollisionOrigin(), *pCenter );
|
|
}
|
|
else
|
|
{
|
|
VectorTransform( vecLocalCenter, pCollideable->CollisionToWorldTransform(), *pCenter );
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Returns the world-align bounds of an entity
|
|
//-----------------------------------------------------------------------------
|
|
void CM_WorldAlignBounds( ICollideable *pCollideable, Vector *pMins, Vector *pMaxs )
|
|
{
|
|
if ( pCollideable->GetCollisionAngles() == vec3_angle )
|
|
{
|
|
*pMins = pCollideable->OBBMins();
|
|
*pMaxs = pCollideable->OBBMaxs();
|
|
}
|
|
else
|
|
{
|
|
ITransformAABB( pCollideable->CollisionToWorldTransform(), pCollideable->OBBMins(), pCollideable->OBBMaxs(), *pMins, *pMaxs );
|
|
*pMins -= pCollideable->GetCollisionOrigin();
|
|
*pMaxs -= pCollideable->GetCollisionOrigin();
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Returns the world-space bounds of an entity
|
|
//-----------------------------------------------------------------------------
|
|
void CM_WorldSpaceBounds( ICollideable *pCollideable, Vector *pMins, Vector *pMaxs )
|
|
{
|
|
if ( pCollideable->GetCollisionAngles() == vec3_angle )
|
|
{
|
|
VectorAdd( pCollideable->GetCollisionOrigin(), pCollideable->OBBMins(), *pMins );
|
|
VectorAdd( pCollideable->GetCollisionOrigin(), pCollideable->OBBMaxs(), *pMaxs );
|
|
}
|
|
else
|
|
{
|
|
TransformAABB( pCollideable->CollisionToWorldTransform(), pCollideable->OBBMins(), pCollideable->OBBMaxs(), *pMins, *pMaxs );
|
|
}
|
|
}
|
|
|
|
|
|
void CM_SetupAreaFloodNums( byte areaFloodNums[MAX_MAP_AREAS], int *pNumAreas )
|
|
{
|
|
CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
|
|
*pNumAreas = pBSPData->numareas;
|
|
if ( pBSPData->numareas > MAX_MAP_AREAS )
|
|
Error( "pBSPData->numareas > MAX_MAP_AREAS" );
|
|
|
|
for ( int i=0; i < pBSPData->numareas; i++ )
|
|
{
|
|
Assert( pBSPData->map_areas[i].floodnum < MAX_MAP_AREAS );
|
|
areaFloodNums[i] = (byte)pBSPData->map_areas[i].floodnum;
|
|
}
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// CFastLeafAccessor implementation.
|
|
// -----------------------------------------------------------------------------
|
|
|
|
CFastPointLeafNum::CFastPointLeafNum()
|
|
{
|
|
m_flDistToExitLeafSqr = -1;
|
|
m_vCachedPos.Init();
|
|
}
|
|
|
|
|
|
int CFastPointLeafNum::GetLeaf( const Vector &vPos )
|
|
{
|
|
if ( vPos.DistToSqr( m_vCachedPos ) > m_flDistToExitLeafSqr )
|
|
{
|
|
m_vCachedPos = vPos;
|
|
|
|
CCollisionBSPData *pBSPData = GetCollisionBSPData();
|
|
m_flDistToExitLeafSqr = 1e24;
|
|
m_iCachedLeaf = CM_PointLeafnumMinDistSqr_r( pBSPData, vPos, 0, m_flDistToExitLeafSqr );
|
|
}
|
|
|
|
return m_iCachedLeaf;
|
|
}
|
|
|
|
|
|
bool FASTCALL IsBoxIntersectingRayNoLowest( fltx4 boxMin, fltx4 boxMax,
|
|
const fltx4 & origin, const fltx4 & delta, const fltx4 & invDelta, // ray parameters
|
|
const fltx4 & vTolerance ///< eg from ReplicateX4(flTolerance)
|
|
)
|
|
{
|
|
/*
|
|
Assert( boxMin[0] <= boxMax[0] );
|
|
Assert( boxMin[1] <= boxMax[1] );
|
|
Assert( boxMin[2] <= boxMax[2] );
|
|
*/
|
|
#if defined(_X360) && defined(DBGFLAG_ASSERT)
|
|
unsigned int r;
|
|
AssertMsg( (XMVectorGreaterOrEqualR(&r, SetWToZeroSIMD(boxMax),SetWToZeroSIMD(boxMin)), XMComparisonAllTrue(r)), "IsBoxIntersectingRay : boxmax < boxmin" );
|
|
#endif
|
|
|
|
// test if delta is tiny along any dimension
|
|
fltx4 bvDeltaTinyComponents = CmpInBoundsSIMD( delta, Four_Epsilons );
|
|
|
|
// push box extents out by tolerance (safe to do because pass by copy, not ref)
|
|
boxMin = SubSIMD(boxMin, vTolerance);
|
|
boxMax = AddSIMD(boxMax, vTolerance);
|
|
|
|
|
|
// for the very short components of the ray, check if the origin is inside the box;
|
|
// if not, then it doesn't intersect.
|
|
fltx4 bvOriginOutsideBox = OrSIMD( CmpLtSIMD(origin,boxMin), CmpGtSIMD(origin,boxMax) );
|
|
bvDeltaTinyComponents = SetWToZeroSIMD(bvDeltaTinyComponents);
|
|
|
|
// work out entry and exit points for the ray. This may produce strange results for
|
|
// very short delta components, but those will be masked out by bvDeltaTinyComponents
|
|
// anyway. We could early-out on bvOriginOutsideBox, but it won't be ready to branch
|
|
// on for fourteen cycles.
|
|
fltx4 vt1 = SubSIMD( boxMin, origin );
|
|
fltx4 vt2 = SubSIMD( boxMax, origin );
|
|
vt1 = MulSIMD( vt1, invDelta );
|
|
vt2 = MulSIMD( vt2, invDelta );
|
|
|
|
// ensure that vt1<vt2
|
|
{
|
|
fltx4 temp = MaxSIMD( vt1, vt2 );
|
|
vt1 = MinSIMD( vt1, vt2 );
|
|
vt2 = temp;
|
|
}
|
|
|
|
// Non-parallel case
|
|
// Find the t's corresponding to the entry and exit of
|
|
// the ray along x, y, and z. The find the furthest entry
|
|
// point, and the closest exit point. Once that is done,
|
|
// we know we don't collide if the closest exit point
|
|
// is behind the starting location. We also don't collide if
|
|
// the closest exit point is in front of the furthest entry point
|
|
fltx4 closestExit,furthestEntry;
|
|
{
|
|
VectorAligned temp;
|
|
StoreAlignedSIMD(temp.Base(),vt2);
|
|
closestExit = ReplicateX4( min( min(temp.x,temp.y), temp.z) );
|
|
|
|
StoreAlignedSIMD(temp.Base(),vt1);
|
|
furthestEntry = ReplicateX4( max( max(temp.x,temp.y), temp.z) );
|
|
}
|
|
|
|
|
|
// now start testing. We bail out if:
|
|
// any component with tiny delta has origin outside the box
|
|
if (!IsAllZeros(AndSIMD(bvOriginOutsideBox, bvDeltaTinyComponents)))
|
|
return false;
|
|
else
|
|
{
|
|
// however if there are tiny components inside the box, we
|
|
// know that they are good. (we didn't really need to run
|
|
// the other computations on them, but it was faster to do
|
|
// so than branching around them).
|
|
|
|
// now it's the origin INSIDE box (eg, tiny components & ~outside box)
|
|
bvOriginOutsideBox = AndNotSIMD(bvOriginOutsideBox,bvDeltaTinyComponents);
|
|
}
|
|
|
|
// closest exit is in front of furthest entry
|
|
fltx4 tminOverTmax = CmpGtSIMD( furthestEntry, closestExit );
|
|
// closest exit is behind start, or furthest entry after end
|
|
fltx4 outOfBounds = OrSIMD( CmpGtSIMD(furthestEntry, LoadOneSIMD()), CmpGtSIMD( LoadZeroSIMD(), closestExit ) );
|
|
fltx4 failedComponents = OrSIMD(tminOverTmax, outOfBounds); // any 1's here mean return false
|
|
// but, if a component is tiny and has its origin inside the box, ignore the computation against bogus invDelta.
|
|
failedComponents = AndNotSIMD(bvOriginOutsideBox,failedComponents);
|
|
return ( IsAllZeros( SetWToZeroSIMD( failedComponents ) ) );
|
|
}
|
|
|
|
// function to time IsBoxIntersectingRay
|
|
#if 0
|
|
/*
|
|
//-----------------------------------------------------------------------------
|
|
bool FASTCALL IsBoxIntersectingRay( fltx4 boxMin, fltx4 boxMax,
|
|
fltx4 origin, fltx4 delta, fltx4 invDelta, // ray parameters
|
|
fltx4 vTolerance ///< eg from ReplicateX4(flTolerance)
|
|
)
|
|
{
|
|
*/
|
|
CON_COMMAND( opt_test_collision, "Quick timing test in IsBoxIntersectingRay" )
|
|
{
|
|
int numIters = 100000;
|
|
if (args.ArgC() >= 1)
|
|
{
|
|
numIters = Q_atoi(args.Arg(1));
|
|
}
|
|
{
|
|
fltx4 boxMin = {1,1,1,0};
|
|
fltx4 boxMax = {2,2,2,0};
|
|
fltx4 origin = {0,0,0,0};
|
|
fltx4 delta = {3,4,3,0};
|
|
fltx4 invdelta = {1.0f/3.0f, 1.0f/4.0f, 1.0f/3.0f,0};
|
|
fltx4 flTolerance = ReplicateX4(.0001f);
|
|
|
|
double startTime = Plat_FloatTime();
|
|
for (int i = numIters ; i > 0 ; --i)
|
|
IsBoxIntersectingRayNoLowest(boxMin,boxMax,origin,delta,invdelta,flTolerance);
|
|
double endTime = Plat_FloatTime();
|
|
Msg("without FindLowest algorithm: %.4f secs for %d runs\n",endTime - startTime,numIters);
|
|
}
|
|
|
|
{
|
|
fltx4 boxMin = {1,1,1,0};
|
|
fltx4 boxMax = {2,2,2,0};
|
|
fltx4 origin = {0,0,0,0};
|
|
fltx4 delta = {3,4,3,0};
|
|
fltx4 invdelta = {1.0f/3.0f, 1.0f/4.0f, 1.0f/3.0f,0};
|
|
fltx4 flTolerance = ReplicateX4(.0001f);
|
|
|
|
double startTime = Plat_FloatTime();
|
|
for (int i = numIters ; i > 0 ; --i)
|
|
IsBoxIntersectingRay(boxMin,boxMax,origin,delta,invdelta,flTolerance);
|
|
double endTime = Plat_FloatTime();
|
|
Msg("using FindLowest algorithm: %.4f secs for %d runs\n",endTime - startTime,numIters);
|
|
}
|
|
|
|
}
|
|
|
|
CON_COMMAND( opt_test_rotation, "Quick timing test of vector rotation my m3x4" )
|
|
{
|
|
int numIters = 100000;
|
|
if (args.ArgC() >= 1)
|
|
{
|
|
numIters = Q_atoi(args.Arg(1));
|
|
}
|
|
|
|
// construct an array of 1024 random vectors
|
|
FourVectors testData[1024];
|
|
SeedRandSIMD(Plat_MSTime());
|
|
for (int i = 0 ; i < 1024 ; ++i)
|
|
{
|
|
testData[i].x = RandSIMD();
|
|
testData[i].y = RandSIMD();
|
|
testData[i].z = RandSIMD();
|
|
}
|
|
|
|
// for also testing store latency
|
|
FourVectors outScratch[16];
|
|
|
|
matrix3x4_t rota;
|
|
AngleIMatrix(QAngle(30,60,90), rota);
|
|
|
|
// THREE DOT PRODUCTS
|
|
{
|
|
double startTime = Plat_FloatTime();
|
|
for (int i = numIters ; i > 0 ; --i)
|
|
{
|
|
int in = i & 1023;
|
|
int out = i & 15;
|
|
|
|
outScratch[out].x = testData[in] * *reinterpret_cast<Vector *>(rota[0]);
|
|
outScratch[out].y = testData[in] * *reinterpret_cast<Vector *>(rota[1]);
|
|
outScratch[out].z = testData[in] * *reinterpret_cast<Vector *>(rota[2]);
|
|
}
|
|
double endTime = Plat_FloatTime();
|
|
Msg("THREE DOT PRODUCTS: %.4f secs for %d runs\n",endTime - startTime,numIters);
|
|
}
|
|
|
|
// REPEATED CALLS TO ROTATEBY
|
|
{
|
|
|
|
double startTime = Plat_FloatTime();
|
|
for (int i = numIters ; i > 0 ; --i)
|
|
{
|
|
int in = i & 1023;
|
|
int out = i & 15;
|
|
|
|
outScratch[out] = testData[in];
|
|
outScratch[out].RotateBy(rota);
|
|
}
|
|
double endTime = Plat_FloatTime();
|
|
Msg("REPEATED CALLS TO ROTATEBY: %.4f secs for %d runs\n",endTime - startTime,numIters);
|
|
}
|
|
|
|
// ROTATEBYMANY
|
|
{
|
|
|
|
double startTime = Plat_FloatTime();
|
|
|
|
int lastBatch = numIters - 1023;
|
|
int i;
|
|
for (i = 0 ; i < lastBatch ; i+=1024 )
|
|
{
|
|
FourVectors::RotateManyBy(testData, 1024, rota);
|
|
}
|
|
if (i < numIters)
|
|
{
|
|
FourVectors::RotateManyBy(testData, numIters-i, rota);
|
|
}
|
|
|
|
double endTime = Plat_FloatTime();
|
|
Msg("ROTATEBYMANY: %.4f secs for %d runs\n",endTime - startTime,numIters);
|
|
}
|
|
|
|
// test
|
|
FourVectors res1, res2;
|
|
res2 = testData[0];
|
|
res1.x = testData[0] * *reinterpret_cast<Vector *>(rota[0]);
|
|
res1.y = testData[0] * *reinterpret_cast<Vector *>(rota[1]);
|
|
res1.z = testData[0] * *reinterpret_cast<Vector *>(rota[2]);
|
|
|
|
res2.RotateBy(rota);
|
|
|
|
Msg("%.3f %.3f %.3f %.3f \t%.3f %.3f %.3f %.3f\n", SubFloat(res1.x, 0), SubFloat(res1.x, 1), SubFloat(res1.x, 2), SubFloat(res1.x, 3),
|
|
SubFloat(res2.x, 0), SubFloat(res2.x, 1), SubFloat(res2.x, 2), SubFloat(res2.x, 3));
|
|
|
|
Msg("%.3f %.3f %.3f %.3f \t%.3f %.3f %.3f %.3f\n", SubFloat(res1.y, 0), SubFloat(res1.y, 1), SubFloat(res1.y, 2), SubFloat(res1.y, 3),
|
|
SubFloat(res2.y, 0), SubFloat(res2.y, 1), SubFloat(res2.y, 2), SubFloat(res2.y, 3));
|
|
|
|
Msg("%.3f %.3f %.3f %.3f \t%.3f %.3f %.3f %.3f\n", SubFloat(res1.z, 0), SubFloat(res1.z, 1), SubFloat(res1.z, 2), SubFloat(res1.z, 3),
|
|
SubFloat(res2.z, 0), SubFloat(res2.z, 1), SubFloat(res2.z, 2), SubFloat(res2.z, 3));
|
|
|
|
}
|
|
|
|
#endif
|