294 lines
7.1 KiB
C++
294 lines
7.1 KiB
C++
// ec2n.cpp - written and placed in the public domain by Wei Dai
|
|
|
|
#include "pch.h"
|
|
|
|
#ifndef CRYPTOPP_IMPORTS
|
|
|
|
#include "ec2n.h"
|
|
#include "asn.h"
|
|
#include "integer.h"
|
|
#include "filters.h"
|
|
#include "algebra.cpp"
|
|
#include "eprecomp.cpp"
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
EC2N::EC2N(BufferedTransformation &bt)
|
|
: m_field(BERDecodeGF2NP(bt))
|
|
{
|
|
BERSequenceDecoder seq(bt);
|
|
m_field->BERDecodeElement(seq, m_a);
|
|
m_field->BERDecodeElement(seq, m_b);
|
|
// skip optional seed
|
|
if (!seq.EndReached())
|
|
{
|
|
SecByteBlock seed;
|
|
unsigned int unused;
|
|
BERDecodeBitString(seq, seed, unused);
|
|
}
|
|
seq.MessageEnd();
|
|
}
|
|
|
|
void EC2N::DEREncode(BufferedTransformation &bt) const
|
|
{
|
|
m_field->DEREncode(bt);
|
|
DERSequenceEncoder seq(bt);
|
|
m_field->DEREncodeElement(seq, m_a);
|
|
m_field->DEREncodeElement(seq, m_b);
|
|
seq.MessageEnd();
|
|
}
|
|
|
|
bool EC2N::DecodePoint(EC2N::Point &P, const byte *encodedPoint, size_t encodedPointLen) const
|
|
{
|
|
StringStore store(encodedPoint, encodedPointLen);
|
|
return DecodePoint(P, store, encodedPointLen);
|
|
}
|
|
|
|
bool EC2N::DecodePoint(EC2N::Point &P, BufferedTransformation &bt, size_t encodedPointLen) const
|
|
{
|
|
byte type;
|
|
if (encodedPointLen < 1 || !bt.Get(type))
|
|
return false;
|
|
|
|
switch (type)
|
|
{
|
|
case 0:
|
|
P.identity = true;
|
|
return true;
|
|
case 2:
|
|
case 3:
|
|
{
|
|
if (encodedPointLen != EncodedPointSize(true))
|
|
return false;
|
|
|
|
P.identity = false;
|
|
P.x.Decode(bt, m_field->MaxElementByteLength());
|
|
|
|
if (P.x.IsZero())
|
|
{
|
|
P.y = m_field->SquareRoot(m_b);
|
|
return true;
|
|
}
|
|
|
|
FieldElement z = m_field->Square(P.x);
|
|
assert(P.x == m_field->SquareRoot(z));
|
|
P.y = m_field->Divide(m_field->Add(m_field->Multiply(z, m_field->Add(P.x, m_a)), m_b), z);
|
|
assert(P.x == m_field->Subtract(m_field->Divide(m_field->Subtract(m_field->Multiply(P.y, z), m_b), z), m_a));
|
|
z = m_field->SolveQuadraticEquation(P.y);
|
|
assert(m_field->Add(m_field->Square(z), z) == P.y);
|
|
z.SetCoefficient(0, type & 1);
|
|
|
|
P.y = m_field->Multiply(z, P.x);
|
|
return true;
|
|
}
|
|
case 4:
|
|
{
|
|
if (encodedPointLen != EncodedPointSize(false))
|
|
return false;
|
|
|
|
unsigned int len = m_field->MaxElementByteLength();
|
|
P.identity = false;
|
|
P.x.Decode(bt, len);
|
|
P.y.Decode(bt, len);
|
|
return true;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void EC2N::EncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const
|
|
{
|
|
if (P.identity)
|
|
NullStore().TransferTo(bt, EncodedPointSize(compressed));
|
|
else if (compressed)
|
|
{
|
|
bt.Put(2 + (!P.x ? 0 : m_field->Divide(P.y, P.x).GetBit(0)));
|
|
P.x.Encode(bt, m_field->MaxElementByteLength());
|
|
}
|
|
else
|
|
{
|
|
unsigned int len = m_field->MaxElementByteLength();
|
|
bt.Put(4); // uncompressed
|
|
P.x.Encode(bt, len);
|
|
P.y.Encode(bt, len);
|
|
}
|
|
}
|
|
|
|
void EC2N::EncodePoint(byte *encodedPoint, const Point &P, bool compressed) const
|
|
{
|
|
ArraySink sink(encodedPoint, EncodedPointSize(compressed));
|
|
EncodePoint(sink, P, compressed);
|
|
assert(sink.TotalPutLength() == EncodedPointSize(compressed));
|
|
}
|
|
|
|
EC2N::Point EC2N::BERDecodePoint(BufferedTransformation &bt) const
|
|
{
|
|
SecByteBlock str;
|
|
BERDecodeOctetString(bt, str);
|
|
Point P;
|
|
if (!DecodePoint(P, str, str.size()))
|
|
BERDecodeError();
|
|
return P;
|
|
}
|
|
|
|
void EC2N::DEREncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const
|
|
{
|
|
SecByteBlock str(EncodedPointSize(compressed));
|
|
EncodePoint(str, P, compressed);
|
|
DEREncodeOctetString(bt, str);
|
|
}
|
|
|
|
bool EC2N::ValidateParameters(RandomNumberGenerator &rng, unsigned int level) const
|
|
{
|
|
CRYPTOPP_UNUSED(rng);
|
|
bool pass = !!m_b;
|
|
pass = pass && m_a.CoefficientCount() <= m_field->MaxElementBitLength();
|
|
pass = pass && m_b.CoefficientCount() <= m_field->MaxElementBitLength();
|
|
|
|
if (level >= 1)
|
|
pass = pass && m_field->GetModulus().IsIrreducible();
|
|
|
|
return pass;
|
|
}
|
|
|
|
bool EC2N::VerifyPoint(const Point &P) const
|
|
{
|
|
const FieldElement &x = P.x, &y = P.y;
|
|
return P.identity ||
|
|
(x.CoefficientCount() <= m_field->MaxElementBitLength()
|
|
&& y.CoefficientCount() <= m_field->MaxElementBitLength()
|
|
&& !(((x+m_a)*x*x+m_b-(x+y)*y)%m_field->GetModulus()));
|
|
}
|
|
|
|
bool EC2N::Equal(const Point &P, const Point &Q) const
|
|
{
|
|
if (P.identity && Q.identity)
|
|
return true;
|
|
|
|
if (P.identity && !Q.identity)
|
|
return false;
|
|
|
|
if (!P.identity && Q.identity)
|
|
return false;
|
|
|
|
return (m_field->Equal(P.x,Q.x) && m_field->Equal(P.y,Q.y));
|
|
}
|
|
|
|
const EC2N::Point& EC2N::Identity() const
|
|
{
|
|
return Singleton<Point>().Ref();
|
|
}
|
|
|
|
const EC2N::Point& EC2N::Inverse(const Point &P) const
|
|
{
|
|
if (P.identity)
|
|
return P;
|
|
else
|
|
{
|
|
m_R.identity = false;
|
|
m_R.y = m_field->Add(P.x, P.y);
|
|
m_R.x = P.x;
|
|
return m_R;
|
|
}
|
|
}
|
|
|
|
const EC2N::Point& EC2N::Add(const Point &P, const Point &Q) const
|
|
{
|
|
if (P.identity) return Q;
|
|
if (Q.identity) return P;
|
|
if (Equal(P, Q)) return Double(P);
|
|
if (m_field->Equal(P.x, Q.x) && m_field->Equal(P.y, m_field->Add(Q.x, Q.y))) return Identity();
|
|
|
|
FieldElement t = m_field->Add(P.y, Q.y);
|
|
t = m_field->Divide(t, m_field->Add(P.x, Q.x));
|
|
FieldElement x = m_field->Square(t);
|
|
m_field->Accumulate(x, t);
|
|
m_field->Accumulate(x, Q.x);
|
|
m_field->Accumulate(x, m_a);
|
|
m_R.y = m_field->Add(P.y, m_field->Multiply(t, x));
|
|
m_field->Accumulate(x, P.x);
|
|
m_field->Accumulate(m_R.y, x);
|
|
|
|
m_R.x.swap(x);
|
|
m_R.identity = false;
|
|
return m_R;
|
|
}
|
|
|
|
const EC2N::Point& EC2N::Double(const Point &P) const
|
|
{
|
|
if (P.identity) return P;
|
|
if (!m_field->IsUnit(P.x)) return Identity();
|
|
|
|
FieldElement t = m_field->Divide(P.y, P.x);
|
|
m_field->Accumulate(t, P.x);
|
|
m_R.y = m_field->Square(P.x);
|
|
m_R.x = m_field->Square(t);
|
|
m_field->Accumulate(m_R.x, t);
|
|
m_field->Accumulate(m_R.x, m_a);
|
|
m_field->Accumulate(m_R.y, m_field->Multiply(t, m_R.x));
|
|
m_field->Accumulate(m_R.y, m_R.x);
|
|
|
|
m_R.identity = false;
|
|
return m_R;
|
|
}
|
|
|
|
// ********************************************************
|
|
|
|
/*
|
|
EcPrecomputation<EC2N>& EcPrecomputation<EC2N>::operator=(const EcPrecomputation<EC2N> &rhs)
|
|
{
|
|
m_ec = rhs.m_ec;
|
|
m_ep = rhs.m_ep;
|
|
m_ep.m_group = m_ec.get();
|
|
return *this;
|
|
}
|
|
|
|
void EcPrecomputation<EC2N>::SetCurveAndBase(const EC2N &ec, const EC2N::Point &base)
|
|
{
|
|
m_ec.reset(new EC2N(ec));
|
|
m_ep.SetGroupAndBase(*m_ec, base);
|
|
}
|
|
|
|
void EcPrecomputation<EC2N>::Precompute(unsigned int maxExpBits, unsigned int storage)
|
|
{
|
|
m_ep.Precompute(maxExpBits, storage);
|
|
}
|
|
|
|
void EcPrecomputation<EC2N>::Load(BufferedTransformation &bt)
|
|
{
|
|
BERSequenceDecoder seq(bt);
|
|
word32 version;
|
|
BERDecodeUnsigned<word32>(seq, version, INTEGER, 1, 1);
|
|
m_ep.m_exponentBase.BERDecode(seq);
|
|
m_ep.m_windowSize = m_ep.m_exponentBase.BitCount() - 1;
|
|
m_ep.m_bases.clear();
|
|
while (!seq.EndReached())
|
|
m_ep.m_bases.push_back(m_ec->BERDecodePoint(seq));
|
|
seq.MessageEnd();
|
|
}
|
|
|
|
void EcPrecomputation<EC2N>::Save(BufferedTransformation &bt) const
|
|
{
|
|
DERSequenceEncoder seq(bt);
|
|
DEREncodeUnsigned<word32>(seq, 1); // version
|
|
m_ep.m_exponentBase.DEREncode(seq);
|
|
for (unsigned i=0; i<m_ep.m_bases.size(); i++)
|
|
m_ec->DEREncodePoint(seq, m_ep.m_bases[i]);
|
|
seq.MessageEnd();
|
|
}
|
|
|
|
EC2N::Point EcPrecomputation<EC2N>::Exponentiate(const Integer &exponent) const
|
|
{
|
|
return m_ep.Exponentiate(exponent);
|
|
}
|
|
|
|
EC2N::Point EcPrecomputation<EC2N>::CascadeExponentiate(const Integer &exponent, const DL_FixedBasePrecomputation<Element> &pc2, const Integer &exponent2) const
|
|
{
|
|
return m_ep.CascadeExponentiate(exponent, static_cast<const EcPrecomputation<EC2N> &>(pc2).m_ep, exponent2);
|
|
}
|
|
*/
|
|
|
|
NAMESPACE_END
|
|
|
|
#endif
|