css_enhanced_waf/vphysics/physics_fluid.cpp
FluorescentCIAAfricanAmerican 3bf9df6b27 1
2020-04-22 12:56:21 -04:00

231 lines
7.3 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#include "cbase.h"
#include "physics_fluid.h"
#include "ivp_compact_surface.hxx"
#include "ivp_surman_polygon.hxx"
#include "ivp_phantom.hxx"
#include "ivp_controller_buoyancy.hxx"
#include "ivp_liquid_surface_descript.hxx"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
// NOTE: This is auto-deleted by the phantom controller
class CBuoyancyAttacher : public IVP_Attacher_To_Cores_Buoyancy
{
public:
virtual IVP_Template_Buoyancy *get_parameters_per_core( IVP_Core *pCore );
CBuoyancyAttacher(IVP_Template_Buoyancy &templ, IVP_U_Set_Active<IVP_Core> *set_of_cores_, IVP_Liquid_Surface_Descriptor *liquid_surface_descriptor_);
float m_density;
};
CPhysicsFluidController::CPhysicsFluidController( CBuoyancyAttacher *pBuoy, IVP_Liquid_Surface_Descriptor *pLiquid, CPhysicsObject *pObject, int nContents )
{
m_pBuoyancy = pBuoy;
m_pLiquidSurface = pLiquid;
m_pObject = pObject;
m_nContents = nContents;
}
CPhysicsFluidController::~CPhysicsFluidController( void )
{
delete m_pLiquidSurface;
}
void CPhysicsFluidController::SetGameData( void *pGameData )
{
m_pGameData = pGameData;
}
void *CPhysicsFluidController::GetGameData( void ) const
{
return m_pGameData;
}
void CPhysicsFluidController::GetSurfacePlane( Vector *pNormal, float *pDist ) const
{
IVP_U_Float_Hesse surface;
IVP_U_Float_Point abs_speed_of_current;
m_pLiquidSurface->calc_liquid_surface( GetIVPObject()->get_core()->environment,
GetIVPObject()->get_core(), &surface, &abs_speed_of_current );
ConvertPlaneToHL( surface, pNormal, pDist );
if ( pNormal )
{
*pNormal *= -1;
}
if ( pDist )
{
*pDist *= -1;
}
}
IVP_Real_Object *CPhysicsFluidController::GetIVPObject()
{
return m_pObject->GetObject();
}
const IVP_Real_Object *CPhysicsFluidController::GetIVPObject() const
{
return m_pObject->GetObject();
}
float CPhysicsFluidController::GetDensity() const
{
return m_pBuoyancy->m_density;
}
void CPhysicsFluidController::WakeAllSleepingObjects()
{
GetIVPObject()->get_controller_phantom()->wake_all_sleeping_objects();
}
int CPhysicsFluidController::GetContents() const
{
return m_nContents;
}
IVP_Template_Buoyancy *CBuoyancyAttacher::get_parameters_per_core( IVP_Core *pCore )
{
if ( pCore )
{
IVP_Real_Object *pivp = pCore->objects.element_at(0);
CPhysicsObject *pPhys = static_cast<CPhysicsObject *>(pivp->client_data);
// This ratio is for objects whose mass / (collision model) volume is not equal to their density.
// Keep the fluid pressure/friction solution for the volume, but scale the buoyant force calculations
// to be in line with the object's real density. This is accompilshed by changing the fluid's density
// on a per-object basis.
float ratio = pPhys->GetBuoyancyRatio();
if ( pPhys->GetShadowController() || !(pPhys->CallbackFlags() & CALLBACK_DO_FLUID_SIMULATION) )
{
// NOTE: don't do buoyancy on these guys for now!
template_buoyancy.medium_density = 0;
}
else
{
template_buoyancy.medium_density = m_density * ratio;
}
}
else
{
template_buoyancy.medium_density = m_density;
}
return &template_buoyancy;
}
CBuoyancyAttacher::CBuoyancyAttacher(IVP_Template_Buoyancy &templ, IVP_U_Set_Active<IVP_Core> *set_of_cores_, IVP_Liquid_Surface_Descriptor *liquid_surface_descriptor_)
:IVP_Attacher_To_Cores_Buoyancy(templ, set_of_cores_, liquid_surface_descriptor_)
{
m_density = templ.medium_density;
}
//-----------------------------------------------------------------------------
// Defines the surface descriptor in local space
//-----------------------------------------------------------------------------
class CLiquidSurfaceDescriptor : public IVP_Liquid_Surface_Descriptor
{
public:
CLiquidSurfaceDescriptor( CPhysicsObject *pFluidObject, const Vector4D &plane, const Vector &current )
{
cplane_t worldPlane;
worldPlane.normal = plane.AsVector3D();
worldPlane.dist = plane[3];
matrix3x4_t matObjectToWorld;
pFluidObject->GetPositionMatrix( &matObjectToWorld );
MatrixITransformPlane( matObjectToWorld, worldPlane, m_objectSpacePlane );
VectorIRotate( current, matObjectToWorld, m_vecObjectSpaceCurrent );
m_pFluidObject = pFluidObject;
}
virtual void calc_liquid_surface( IVP_Environment * /*environment*/,
IVP_Core * /*core*/,
IVP_U_Float_Hesse *surface_normal_out,
IVP_U_Float_Point *abs_speed_of_current_out)
{
cplane_t worldPlane;
matrix3x4_t matObjectToWorld;
m_pFluidObject->GetPositionMatrix( &matObjectToWorld );
MatrixTransformPlane( matObjectToWorld, m_objectSpacePlane, worldPlane );
worldPlane.normal *= -1.0f;
worldPlane.dist *= -1.0f;
IVP_U_Float_Hesse worldSurface;
ConvertPlaneToIVP( worldPlane.normal, worldPlane.dist, worldSurface );
surface_normal_out->set(&worldSurface);
surface_normal_out->hesse_val = worldSurface.hesse_val;
Vector worldSpaceCurrent;
VectorRotate( m_vecObjectSpaceCurrent, matObjectToWorld, worldSpaceCurrent );
IVP_U_Float_Point ivpWorldSpaceCurrent;
ConvertDirectionToIVP( worldSpaceCurrent, ivpWorldSpaceCurrent );
abs_speed_of_current_out->set( &ivpWorldSpaceCurrent );
}
private:
Vector m_vecObjectSpaceCurrent;
cplane_t m_objectSpacePlane;
CPhysicsObject *m_pFluidObject;
};
CPhysicsFluidController *CreateFluidController( IVP_Environment *pEnvironment, CPhysicsObject *pFluidObject, fluidparams_t *pParams )
{
pFluidObject->BecomeTrigger();
IVP_Controller_Phantom *pPhantom = pFluidObject->GetObject()->get_controller_phantom();
if ( !pPhantom )
return NULL;
IVP_Liquid_Surface_Descriptor *lsd = new CLiquidSurfaceDescriptor( pFluidObject, pParams->surfacePlane, pParams->currentVelocity );
int surfaceprops = pFluidObject->GetMaterialIndex();
float density = physprops->GetSurfaceData( surfaceprops )->physics.density;
// ---------------------------------------------
// create parameter template for Buoyancy_Solver
// ---------------------------------------------
// UNDONE: Expose these other parametersd
IVP_Template_Buoyancy buoyancy_input;
buoyancy_input.medium_density = ConvertDensityToIVP(density); // density of water (unit: kg/m^3)
buoyancy_input.pressure_damp_factor = pParams->damping;
buoyancy_input.viscosity_factor = 0.0f;
buoyancy_input.torque_factor = 0.01f;
buoyancy_input.viscosity_input_factor = 0.1f;
// -------------------------------------------------------------------------------
// create "water" (i.e. buoyancy solver) and attach a dynamic list of object cores
// -------------------------------------------------------------------------------
CBuoyancyAttacher *attacher_to_cores_buoyancy = new CBuoyancyAttacher( buoyancy_input, pPhantom->get_intruding_cores(), lsd );
CPhysicsFluidController *pFluid = new CPhysicsFluidController( attacher_to_cores_buoyancy, lsd, pFluidObject, pParams->contents );
pFluid->SetGameData( pParams->pGameData );
pPhantom->client_data = static_cast<void *>(pFluid);
return pFluid;
}
bool SavePhysicsFluidController( const physsaveparams_t &params, CPhysicsFluidController *pFluidObject )
{
return false;
}
bool RestorePhysicsFluidController( const physrestoreparams_t &params, CPhysicsFluidController **ppFluidObject )
{
return false;
}