css_enhanced_waf/soundsystem/snd_dev_wave.cpp
FluorescentCIAAfricanAmerican 3bf9df6b27 1
2020-04-22 12:56:21 -04:00

899 lines
22 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//===========================================================================//
#include "snd_dev_wave.h"
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#pragma warning( disable: 4201 )
#include <mmsystem.h>
#pragma warning( default: 4201 )
#include <stdio.h>
#include <math.h>
#include "soundsystem/snd_audio_source.h"
#include "soundsystem.h"
#include "soundsystem/snd_device.h"
#include "tier1/utlvector.h"
#include "filesystem.h"
#include "sentence.h"
//-----------------------------------------------------------------------------
// Forward declarations
//-----------------------------------------------------------------------------
class CAudioMixer;
//-----------------------------------------------------------------------------
// Important constants
//-----------------------------------------------------------------------------
// 64K is > 1 second at 16-bit, 22050 Hz
// 44k: UNDONE - need to double buffers now that we're playing back at 44100?
#define OUTPUT_CHANNEL_COUNT 2
#define BYTES_PER_SAMPLE 2
#define OUTPUT_SAMPLE_RATE SOUND_DMA_SPEED
#define OUTPUT_BUFFER_COUNT 64
#define OUTPUT_BUFFER_MASK 0x3F
#define OUTPUT_BUFFER_SAMPLE_COUNT (OUTPUT_BUFFER_SIZE_BYTES / BYTES_PER_SAMPLE)
#define OUTPUT_BUFFER_SIZE_BYTES 1024
#define PAINTBUFFER_SIZE 1024
#define MAX_CHANNELS 16
//-----------------------------------------------------------------------------
// Implementation of IAudioDevice for WAV files
//-----------------------------------------------------------------------------
class CAudioDeviceWave : public IAudioDevice
{
public:
// Inherited from IAudioDevice
virtual bool Init( void );
virtual void Shutdown( void );
virtual const char *DeviceName( void ) const;
virtual int DeviceChannels( void ) const;
virtual int DeviceSampleBits( void ) const;
virtual int DeviceSampleBytes( void ) const;
virtual int DeviceSampleRate( void ) const;
virtual int DeviceSampleCount( void ) const;
virtual void Mix8Mono( channel_t *pChannel, char *pData, int outputOffset, int inputOffset, fixedint rateScaleFix, int outCount, int timecompress, bool forward = true );
virtual void Mix8Stereo( channel_t *pChannel, char *pData, int outputOffset, int inputOffset, fixedint rateScaleFix, int outCount, int timecompress, bool forward = true );
virtual void Mix16Mono( channel_t *pChannel, short *pData, int outputOffset, int inputOffset, fixedint rateScaleFix, int outCount, int timecompress, bool forward = true );
virtual void Mix16Stereo( channel_t *pChannel, short *pData, int outputOffset, int inputOffset, fixedint rateScaleFix, int outCount, int timecompress, bool forward = true );
virtual int PaintBufferSampleCount( void ) const;
virtual void MixBegin( void );
// mix a buffer up to time (time is absolute)
void Update( float time );
void Flush( void );
void TransferBufferStereo16( short *pOutput, int sampleCount );
int GetOutputPosition( void );
float GetAmountofTimeAhead( void );
int GetNumberofSamplesAhead( void );
void AddSource( CAudioMixer *pSource );
void StopSounds( void );
int FindSourceIndex( CAudioMixer *pSource );
CAudioMixer *GetMixerForSource( CAudioSource *source );
private:
class CAudioMixerState
{
public:
CAudioMixer *mixer;
};
class CAudioBuffer
{
public:
WAVEHDR *hdr;
bool submitted;
int submit_sample_count;
CUtlVector< CAudioMixerState > m_Referenced;
};
struct portable_samplepair_t
{
int left;
int right;
};
void OpenWaveOut( void );
void CloseWaveOut( void );
void AllocateOutputBuffers();
void FreeOutputBuffers();
void* AllocOutputMemory( int nSize, HGLOBAL &hMemory );
void FreeOutputMemory( HGLOBAL &hMemory );
bool ValidWaveOut( void ) const;
CAudioBuffer *GetEmptyBuffer( void );
void SilenceBuffer( short *pSamples, int sampleCount );
void SetChannel( int channelIndex, CAudioMixer *pSource );
void FreeChannel( int channelIndex );
void RemoveMixerChannelReferences( CAudioMixer *mixer );
void AddToReferencedList( CAudioMixer *mixer, CAudioBuffer *buffer );
void RemoveFromReferencedList( CAudioMixer *mixer, CAudioBuffer *buffer );
bool IsSourceReferencedByActiveBuffer( CAudioMixer *mixer );
bool IsSoundInReferencedList( CAudioMixer *mixer, CAudioBuffer *buffer );
// Compute how many samples we've mixed since most recent buffer submission
void ComputeSampleAheadAmount( void );
// This is a single allocation for all wave headers (there are OUTPUT_BUFFER_COUNT of them)
HGLOBAL m_hWaveHdr;
// This is a single allocation for all wave data (there are OUTPUT_BUFFER_COUNT of them)
HANDLE m_hWaveData;
HWAVEOUT m_waveOutHandle;
float m_mixTime;
float m_baseTime;
int m_sampleIndex;
CAudioBuffer m_buffers[ OUTPUT_BUFFER_COUNT ];
CAudioMixer *m_sourceList[MAX_CHANNELS];
int m_nEstimatedSamplesAhead;
portable_samplepair_t m_paintbuffer[ PAINTBUFFER_SIZE ];
};
//-----------------------------------------------------------------------------
// Singleton
//-----------------------------------------------------------------------------
IAudioDevice *Audio_CreateWaveDevice( void )
{
return new CAudioDeviceWave;
}
//-----------------------------------------------------------------------------
// Init, shutdown
//-----------------------------------------------------------------------------
bool CAudioDeviceWave::Init( void )
{
m_hWaveData = NULL;
m_hWaveHdr = NULL;
m_waveOutHandle = NULL;
for ( int i = 0; i < OUTPUT_BUFFER_COUNT; i++ )
{
CAudioBuffer *buffer = &m_buffers[ i ];
Assert( buffer );
buffer->hdr = NULL;
buffer->submitted = false;
buffer->submit_sample_count = false;
}
OpenWaveOut();
m_mixTime = m_baseTime = -1;
m_sampleIndex = 0;
memset( m_sourceList, 0, sizeof(m_sourceList) );
m_nEstimatedSamplesAhead = (int)( ( float ) OUTPUT_SAMPLE_RATE / 10.0f );
return true;
}
void CAudioDeviceWave::Shutdown( void )
{
CloseWaveOut();
}
//-----------------------------------------------------------------------------
// WAV out device
//-----------------------------------------------------------------------------
inline bool CAudioDeviceWave::ValidWaveOut( void ) const
{
return m_waveOutHandle != 0;
}
//-----------------------------------------------------------------------------
// Opens the windows wave out device
//-----------------------------------------------------------------------------
void CAudioDeviceWave::OpenWaveOut( void )
{
WAVEFORMATEX waveFormat;
memset( &waveFormat, 0, sizeof(waveFormat) );
// Select a PCM, 16-bit stereo playback device
waveFormat.cbSize = sizeof(waveFormat);
waveFormat.wFormatTag = WAVE_FORMAT_PCM;
waveFormat.nChannels = DeviceChannels();
waveFormat.wBitsPerSample = DeviceSampleBits();
waveFormat.nSamplesPerSec = DeviceSampleRate();
waveFormat.nBlockAlign = waveFormat.nChannels * waveFormat.wBitsPerSample / 8;
waveFormat.nAvgBytesPerSec = waveFormat.nSamplesPerSec * waveFormat.nBlockAlign;
MMRESULT errorCode = waveOutOpen( &m_waveOutHandle, WAVE_MAPPER, &waveFormat, 0, 0L, CALLBACK_NULL );
while ( errorCode != MMSYSERR_NOERROR )
{
if ( errorCode != MMSYSERR_ALLOCATED )
{
DWarning( "soundsystem", 1, "waveOutOpen failed\n" );
m_waveOutHandle = 0;
return;
}
int nRetVal = MessageBox( NULL,
"The sound hardware is in use by another app.\n\n"
"Select Retry to try to start sound again or Cancel to run with no sound.",
"Sound not available",
MB_RETRYCANCEL | MB_SETFOREGROUND | MB_ICONEXCLAMATION);
if ( nRetVal != IDRETRY )
{
DWarning( "soundsystem", 1, "waveOutOpen failure--hardware already in use\n" );
m_waveOutHandle = 0;
return;
}
errorCode = waveOutOpen( &m_waveOutHandle, WAVE_MAPPER, &waveFormat, 0, 0L, CALLBACK_NULL );
}
AllocateOutputBuffers();
}
//-----------------------------------------------------------------------------
// Closes the windows wave out device
//-----------------------------------------------------------------------------
void CAudioDeviceWave::CloseWaveOut( void )
{
if ( ValidWaveOut() )
{
waveOutReset( m_waveOutHandle );
FreeOutputBuffers();
waveOutClose( m_waveOutHandle );
m_waveOutHandle = NULL;
}
}
//-----------------------------------------------------------------------------
// Alloc output memory
//-----------------------------------------------------------------------------
void* CAudioDeviceWave::AllocOutputMemory( int nSize, HGLOBAL &hMemory )
{
// Output memory for waveform data+hdrs must be
// globally allocated with GMEM_MOVEABLE and GMEM_SHARE flags.
hMemory = GlobalAlloc( GMEM_MOVEABLE | GMEM_SHARE, nSize );
if ( !hMemory )
{
DWarning( "soundsystem", 1, "Sound: Out of memory.\n");
CloseWaveOut();
return NULL;
}
HPSTR lpData = (char *)GlobalLock( hMemory );
if ( !lpData )
{
DWarning( "soundsystem", 1, "Sound: Failed to lock.\n");
GlobalFree( hMemory );
hMemory = NULL;
CloseWaveOut();
return NULL;
}
memset( lpData, 0, nSize );
return lpData;
}
//-----------------------------------------------------------------------------
// Free output memory
//-----------------------------------------------------------------------------
void CAudioDeviceWave::FreeOutputMemory( HGLOBAL &hMemory )
{
if ( hMemory )
{
GlobalUnlock( hMemory );
GlobalFree( hMemory );
hMemory = NULL;
}
}
//-----------------------------------------------------------------------------
// Allocate, free output buffers
//-----------------------------------------------------------------------------
void CAudioDeviceWave::AllocateOutputBuffers()
{
// Allocate and lock memory for the waveform data.
int nBufferSize = OUTPUT_BUFFER_SIZE_BYTES * OUTPUT_BUFFER_COUNT;
HPSTR lpData = (char *)AllocOutputMemory( nBufferSize, m_hWaveData );
if ( !lpData )
return;
// Allocate and lock memory for the waveform header
int nHdrSize = sizeof( WAVEHDR ) * OUTPUT_BUFFER_COUNT;
LPWAVEHDR lpWaveHdr = (LPWAVEHDR)AllocOutputMemory( nHdrSize, m_hWaveHdr );
if ( !lpWaveHdr )
return;
// After allocation, set up and prepare headers.
for ( int i=0 ; i < OUTPUT_BUFFER_COUNT; i++ )
{
LPWAVEHDR lpHdr = lpWaveHdr + i;
lpHdr->dwBufferLength = OUTPUT_BUFFER_SIZE_BYTES;
lpHdr->lpData = lpData + (i * OUTPUT_BUFFER_SIZE_BYTES);
MMRESULT nResult = waveOutPrepareHeader( m_waveOutHandle, lpHdr, sizeof(WAVEHDR) );
if ( nResult != MMSYSERR_NOERROR )
{
DWarning( "soundsystem", 1, "Sound: failed to prepare wave headers\n" );
CloseWaveOut();
return;
}
m_buffers[i].hdr = lpHdr;
}
}
void CAudioDeviceWave::FreeOutputBuffers()
{
// Unprepare headers.
for ( int i=0 ; i < OUTPUT_BUFFER_COUNT; i++ )
{
if ( m_buffers[i].hdr )
{
waveOutUnprepareHeader( m_waveOutHandle, m_buffers[i].hdr, sizeof(WAVEHDR) );
m_buffers[i].hdr = NULL;
}
m_buffers[i].submitted = false;
m_buffers[i].submit_sample_count = 0;
m_buffers[i].m_Referenced.Purge();
}
FreeOutputMemory( m_hWaveData );
FreeOutputMemory( m_hWaveHdr );
}
//-----------------------------------------------------------------------------
// Device parameters
//-----------------------------------------------------------------------------
const char *CAudioDeviceWave::DeviceName( void ) const
{
return "Windows WAVE";
}
int CAudioDeviceWave::DeviceChannels( void ) const
{
return 2;
}
int CAudioDeviceWave::DeviceSampleBits( void ) const
{
return (BYTES_PER_SAMPLE * 8);
}
int CAudioDeviceWave::DeviceSampleBytes( void ) const
{
return BYTES_PER_SAMPLE;
}
int CAudioDeviceWave::DeviceSampleRate( void ) const
{
return OUTPUT_SAMPLE_RATE;
}
int CAudioDeviceWave::DeviceSampleCount( void ) const
{
return OUTPUT_BUFFER_SAMPLE_COUNT;
}
int CAudioDeviceWave::PaintBufferSampleCount( void ) const
{
return PAINTBUFFER_SIZE;
}
//-----------------------------------------------------------------------------
// Mixing routines
//-----------------------------------------------------------------------------
void CAudioDeviceWave::Mix8Mono( channel_t *pChannel, char *pData, int outputOffset, int inputOffset, fixedint rateScaleFix, int outCount, int timecompress, bool forward )
{
int sampleIndex = 0;
fixedint sampleFrac = inputOffset;
int fixup = 0;
int fixupstep = 1;
if ( !forward )
{
fixup = outCount - 1;
fixupstep = -1;
}
for ( int i = 0; i < outCount; i++, fixup += fixupstep )
{
int dest = max( outputOffset + fixup, 0 );
m_paintbuffer[ dest ].left += pChannel->leftvol * pData[sampleIndex];
m_paintbuffer[ dest ].right += pChannel->rightvol * pData[sampleIndex];
sampleFrac += rateScaleFix;
sampleIndex += FIX_INTPART(sampleFrac);
sampleFrac = FIX_FRACPART(sampleFrac);
}
}
void CAudioDeviceWave::Mix8Stereo( channel_t *pChannel, char *pData, int outputOffset, int inputOffset, fixedint rateScaleFix, int outCount, int timecompress, bool forward )
{
int sampleIndex = 0;
fixedint sampleFrac = inputOffset;
int fixup = 0;
int fixupstep = 1;
if ( !forward )
{
fixup = outCount - 1;
fixupstep = -1;
}
for ( int i = 0; i < outCount; i++, fixup += fixupstep )
{
int dest = max( outputOffset + fixup, 0 );
m_paintbuffer[ dest ].left += pChannel->leftvol * pData[sampleIndex];
m_paintbuffer[ dest ].right += pChannel->rightvol * pData[sampleIndex+1];
sampleFrac += rateScaleFix;
sampleIndex += FIX_INTPART(sampleFrac)<<1;
sampleFrac = FIX_FRACPART(sampleFrac);
}
}
void CAudioDeviceWave::Mix16Mono( channel_t *pChannel, short *pData, int outputOffset, int inputOffset, fixedint rateScaleFix, int outCount, int timecompress, bool forward )
{
int sampleIndex = 0;
fixedint sampleFrac = inputOffset;
int fixup = 0;
int fixupstep = 1;
if ( !forward )
{
fixup = outCount - 1;
fixupstep = -1;
}
for ( int i = 0; i < outCount; i++, fixup += fixupstep )
{
int dest = max( outputOffset + fixup, 0 );
m_paintbuffer[ dest ].left += (pChannel->leftvol * pData[sampleIndex])>>8;
m_paintbuffer[ dest ].right += (pChannel->rightvol * pData[sampleIndex])>>8;
sampleFrac += rateScaleFix;
sampleIndex += FIX_INTPART(sampleFrac);
sampleFrac = FIX_FRACPART(sampleFrac);
}
}
void CAudioDeviceWave::Mix16Stereo( channel_t *pChannel, short *pData, int outputOffset, int inputOffset, fixedint rateScaleFix, int outCount, int timecompress, bool forward )
{
int sampleIndex = 0;
fixedint sampleFrac = inputOffset;
int fixup = 0;
int fixupstep = 1;
if ( !forward )
{
fixup = outCount - 1;
fixupstep = -1;
}
for ( int i = 0; i < outCount; i++, fixup += fixupstep )
{
int dest = max( outputOffset + fixup, 0 );
m_paintbuffer[ dest ].left += (pChannel->leftvol * pData[sampleIndex])>>8;
m_paintbuffer[ dest ].right += (pChannel->rightvol * pData[sampleIndex+1])>>8;
sampleFrac += rateScaleFix;
sampleIndex += FIX_INTPART(sampleFrac)<<1;
sampleFrac = FIX_FRACPART(sampleFrac);
}
}
void CAudioDeviceWave::MixBegin( void )
{
memset( m_paintbuffer, 0, sizeof(m_paintbuffer) );
}
void CAudioDeviceWave::TransferBufferStereo16( short *pOutput, int sampleCount )
{
for ( int i = 0; i < sampleCount; i++ )
{
if ( m_paintbuffer[i].left > 32767 )
m_paintbuffer[i].left = 32767;
else if ( m_paintbuffer[i].left < -32768 )
m_paintbuffer[i].left = -32768;
if ( m_paintbuffer[i].right > 32767 )
m_paintbuffer[i].right = 32767;
else if ( m_paintbuffer[i].right < -32768 )
m_paintbuffer[i].right = -32768;
*pOutput++ = (short)m_paintbuffer[i].left;
*pOutput++ = (short)m_paintbuffer[i].right;
}
}
void CAudioDeviceWave::RemoveMixerChannelReferences( CAudioMixer *mixer )
{
for ( int i = 0; i < OUTPUT_BUFFER_COUNT; i++ )
{
RemoveFromReferencedList( mixer, &m_buffers[ i ] );
}
}
void CAudioDeviceWave::AddToReferencedList( CAudioMixer *mixer, CAudioBuffer *buffer )
{
// Already in list
for ( int i = 0; i < buffer->m_Referenced.Size(); i++ )
{
if ( buffer->m_Referenced[ i ].mixer == mixer )
return;
}
// Just remove it
int idx = buffer->m_Referenced.AddToTail();
CAudioMixerState *state = &buffer->m_Referenced[ idx ];
state->mixer = mixer;
}
void CAudioDeviceWave::RemoveFromReferencedList( CAudioMixer *mixer, CAudioBuffer *buffer )
{
for ( int i = 0; i < buffer->m_Referenced.Size(); i++ )
{
if ( buffer->m_Referenced[ i ].mixer == mixer )
{
buffer->m_Referenced.Remove( i );
break;
}
}
}
bool CAudioDeviceWave::IsSoundInReferencedList( CAudioMixer *mixer, CAudioBuffer *buffer )
{
for ( int i = 0; i < buffer->m_Referenced.Size(); i++ )
{
if ( buffer->m_Referenced[ i ].mixer == mixer )
{
return true;
}
}
return false;
}
bool CAudioDeviceWave::IsSourceReferencedByActiveBuffer( CAudioMixer *mixer )
{
if ( !ValidWaveOut() )
return false;
CAudioBuffer *buffer;
for ( int i = 0; i < OUTPUT_BUFFER_COUNT; i++ )
{
buffer = &m_buffers[ i ];
if ( !buffer->submitted )
continue;
if ( buffer->hdr->dwFlags & WHDR_DONE )
continue;
// See if it's referenced
if ( IsSoundInReferencedList( mixer, buffer ) )
return true;
}
return false;
}
CAudioDeviceWave::CAudioBuffer *CAudioDeviceWave::GetEmptyBuffer( void )
{
CAudioBuffer *pOutput = NULL;
if ( ValidWaveOut() )
{
for ( int i = 0; i < OUTPUT_BUFFER_COUNT; i++ )
{
if ( !(m_buffers[ i ].submitted ) ||
m_buffers[i].hdr->dwFlags & WHDR_DONE )
{
pOutput = &m_buffers[i];
pOutput->submitted = true;
pOutput->m_Referenced.Purge();
break;
}
}
}
return pOutput;
}
void CAudioDeviceWave::SilenceBuffer( short *pSamples, int sampleCount )
{
int i;
for ( i = 0; i < sampleCount; i++ )
{
// left
*pSamples++ = 0;
// right
*pSamples++ = 0;
}
}
void CAudioDeviceWave::Flush( void )
{
waveOutReset( m_waveOutHandle );
}
// mix a buffer up to time (time is absolute)
void CAudioDeviceWave::Update( float time )
{
if ( !ValidWaveOut() )
return;
// reset the system
if ( m_mixTime < 0 || time < m_baseTime )
{
m_baseTime = time;
m_mixTime = 0;
}
// put time in our coordinate frame
time -= m_baseTime;
if ( time > m_mixTime )
{
CAudioBuffer *pBuffer = GetEmptyBuffer();
// no free buffers, mixing is ahead of the playback!
if ( !pBuffer || !pBuffer->hdr )
{
//Con_Printf( "out of buffers\n" );
return;
}
// UNDONE: These numbers are constants
// calc number of samples (2 channels * 2 bytes per sample)
int sampleCount = pBuffer->hdr->dwBufferLength >> 2;
m_mixTime += sampleCount * (1.0f / OUTPUT_SAMPLE_RATE);
short *pSamples = reinterpret_cast<short *>(pBuffer->hdr->lpData);
SilenceBuffer( pSamples, sampleCount );
int tempCount = sampleCount;
while ( tempCount > 0 )
{
if ( tempCount > PaintBufferSampleCount() )
{
sampleCount = PaintBufferSampleCount();
}
else
{
sampleCount = tempCount;
}
MixBegin();
for ( int i = 0; i < MAX_CHANNELS; i++ )
{
CAudioMixer *pSource = m_sourceList[i];
if ( !pSource )
continue;
int currentsample = pSource->GetSamplePosition();
bool forward = pSource->GetDirection();
if ( pSource->GetActive() )
{
if ( !pSource->MixDataToDevice( this, pSource->GetChannel(), currentsample, sampleCount, DeviceSampleRate(), forward ) )
{
// Source becomes inactive when last submitted sample is finally
// submitted. But it lingers until it's no longer referenced
pSource->SetActive( false );
}
else
{
AddToReferencedList( pSource, pBuffer );
}
}
else
{
if ( !IsSourceReferencedByActiveBuffer( pSource ) )
{
if ( !pSource->GetAutoDelete() )
{
FreeChannel( i );
}
}
else
{
pSource->IncrementSamples( pSource->GetChannel(), currentsample, sampleCount, DeviceSampleRate(), forward );
}
}
}
TransferBufferStereo16( pSamples, sampleCount );
m_sampleIndex += sampleCount;
tempCount -= sampleCount;
pSamples += sampleCount * 2;
}
// if the buffers aren't aligned on sample boundaries, this will hard-lock the machine!
pBuffer->submit_sample_count = GetOutputPosition();
waveOutWrite( m_waveOutHandle, pBuffer->hdr, sizeof(*(pBuffer->hdr)) );
}
}
/*
int CAudioDeviceWave::GetNumberofSamplesAhead( void )
{
ComputeSampleAheadAmount();
return m_nEstimatedSamplesAhead;
}
float CAudioDeviceWave::GetAmountofTimeAhead( void )
{
ComputeSampleAheadAmount();
return ( (float)m_nEstimatedSamplesAhead / (float)OUTPUT_SAMPLE_RATE );
}
// Find the most recent submitted sample that isn't flagged as whdr_done
void CAudioDeviceWave::ComputeSampleAheadAmount( void )
{
m_nEstimatedSamplesAhead = 0;
int newest_sample_index = -1;
int newest_sample_count = 0;
CAudioBuffer *buffer;
if ( ValidDevice() )
{
for ( int i = 0; i < OUTPUT_BUFFER_COUNT; i++ )
{
buffer = &m_buffers[ i ];
if ( !buffer->submitted )
continue;
if ( buffer->hdr->dwFlags & WHDR_DONE )
continue;
if ( buffer->submit_sample_count > newest_sample_count )
{
newest_sample_index = i;
newest_sample_count = buffer->submit_sample_count;
}
}
}
if ( newest_sample_index == -1 )
return;
buffer = &m_buffers[ newest_sample_index ];
int currentPos = GetOutputPosition() ;
m_nEstimatedSamplesAhead = currentPos - buffer->submit_sample_count;
}
*/
int CAudioDeviceWave::FindSourceIndex( CAudioMixer *pSource )
{
for ( int i = 0; i < MAX_CHANNELS; i++ )
{
if ( pSource == m_sourceList[i] )
{
return i;
}
}
return -1;
}
CAudioMixer *CAudioDeviceWave::GetMixerForSource( CAudioSource *source )
{
for ( int i = 0; i < MAX_CHANNELS; i++ )
{
if ( !m_sourceList[i] )
continue;
if ( source == m_sourceList[i]->GetSource() )
{
return m_sourceList[i];
}
}
return NULL;
}
void CAudioDeviceWave::AddSource( CAudioMixer *pSource )
{
int slot = 0;
for ( int i = 0; i < MAX_CHANNELS; i++ )
{
if ( !m_sourceList[i] )
{
slot = i;
break;
}
}
if ( m_sourceList[slot] )
{
FreeChannel( slot );
}
SetChannel( slot, pSource );
pSource->SetActive( true );
}
void CAudioDeviceWave::StopSounds( void )
{
for ( int i = 0; i < MAX_CHANNELS; i++ )
{
if ( m_sourceList[i] )
{
FreeChannel( i );
}
}
}
void CAudioDeviceWave::SetChannel( int channelIndex, CAudioMixer *pSource )
{
if ( channelIndex < 0 || channelIndex >= MAX_CHANNELS )
return;
m_sourceList[channelIndex] = pSource;
}
void CAudioDeviceWave::FreeChannel( int channelIndex )
{
if ( channelIndex < 0 || channelIndex >= MAX_CHANNELS )
return;
if ( m_sourceList[channelIndex] )
{
RemoveMixerChannelReferences( m_sourceList[channelIndex] );
delete m_sourceList[channelIndex];
m_sourceList[channelIndex] = NULL;
}
}
int CAudioDeviceWave::GetOutputPosition( void )
{
if ( !m_waveOutHandle )
return 0;
MMTIME mmtime;
mmtime.wType = TIME_SAMPLES;
waveOutGetPosition( m_waveOutHandle, &mmtime, sizeof( MMTIME ) );
// Convert time to sample count
return ( mmtime.u.sample );
}