653 lines
16 KiB
C++
653 lines
16 KiB
C++
//========= Copyright Valve Corporation, All rights reserved. ============//
|
|
//
|
|
// Purpose:
|
|
//
|
|
// $NoKeywords: $
|
|
//
|
|
//===========================================================================//
|
|
// trace.c
|
|
|
|
//=============================================================================
|
|
|
|
#include "vrad.h"
|
|
#include "trace.h"
|
|
#include "Cmodel.h"
|
|
#include "mathlib/vmatrix.h"
|
|
|
|
|
|
//=============================================================================
|
|
|
|
class CToolTrace : public CBaseTrace
|
|
{
|
|
public:
|
|
CToolTrace() {}
|
|
|
|
Vector mins;
|
|
Vector maxs;
|
|
Vector extents;
|
|
|
|
texinfo_t *surface;
|
|
|
|
qboolean ispoint;
|
|
|
|
private:
|
|
CToolTrace( const CToolTrace& );
|
|
};
|
|
|
|
|
|
// 1/32 epsilon to keep floating point happy
|
|
#define DIST_EPSILON (0.03125)
|
|
|
|
// JAYHL2: This used to be -1, but that caused lots of epsilon issues
|
|
// around slow sloping planes. Perhaps Quake2 limited maps to a certain
|
|
// slope / angle on walkable ground. It has to be a negative number
|
|
// so that the tests work out.
|
|
#define NEVER_UPDATED -9999
|
|
|
|
//=============================================================================
|
|
|
|
bool DM_RayDispIntersectTest( CVRADDispColl *pTree, Vector& rayStart, Vector& rayEnd, CToolTrace *pTrace );
|
|
void DM_ClipBoxToBrush( CToolTrace *trace, const Vector & mins, const Vector & maxs, const Vector& p1, const Vector& p2, dbrush_t *brush );
|
|
|
|
//=============================================================================
|
|
|
|
float TraceLeafBrushes( int leafIndex, const Vector &start, const Vector &end, CBaseTrace &traceOut )
|
|
{
|
|
dleaf_t *pLeaf = dleafs + leafIndex;
|
|
CToolTrace trace;
|
|
memset( &trace, 0, sizeof(trace) );
|
|
trace.ispoint = true;
|
|
trace.startsolid = false;
|
|
trace.fraction = 1.0;
|
|
|
|
for ( int i = 0; i < pLeaf->numleafbrushes; i++ )
|
|
{
|
|
int brushnum = dleafbrushes[pLeaf->firstleafbrush+i];
|
|
dbrush_t *b = &dbrushes[brushnum];
|
|
if ( !(b->contents & MASK_OPAQUE))
|
|
continue;
|
|
|
|
Vector zeroExtents = vec3_origin;
|
|
DM_ClipBoxToBrush( &trace, zeroExtents, zeroExtents, start, end, b);
|
|
if ( trace.fraction != 1.0 || trace.startsolid )
|
|
{
|
|
if ( trace.startsolid )
|
|
trace.fraction = 0.0f;
|
|
traceOut = trace;
|
|
return trace.fraction;
|
|
}
|
|
}
|
|
traceOut = trace;
|
|
return 1.0f;
|
|
}
|
|
|
|
DispTested_t s_DispTested[MAX_TOOL_THREADS+1];
|
|
|
|
// this just uses the average coverage for the triangle
|
|
class CCoverageCount : public ITransparentTriangleCallback
|
|
{
|
|
public:
|
|
CCoverageCount()
|
|
{
|
|
m_coverage = Four_Zeros;
|
|
}
|
|
|
|
virtual bool VisitTriangle_ShouldContinue( const TriIntersectData_t &triangle, const FourRays &rays, fltx4 *pHitMask, fltx4 *b0, fltx4 *b1, fltx4 *b2, int32 hitID )
|
|
{
|
|
float color = g_RtEnv.GetTriangleColor( hitID ).x;
|
|
m_coverage = AddSIMD( m_coverage, AndSIMD ( *pHitMask, ReplicateX4 ( color ) ) );
|
|
m_coverage = MinSIMD( m_coverage, Four_Ones );
|
|
|
|
fltx4 onesMask = CmpEqSIMD( m_coverage, Four_Ones );
|
|
|
|
// we should continue if the ones that hit the triangle have onesMask set to zero
|
|
// so hitMask & onesMask != hitMask
|
|
// so hitMask & onesMask == hitMask means we're done
|
|
// so ts(hitMask & onesMask == hitMask) != 0xF says go on
|
|
return 0xF != TestSignSIMD ( CmpEqSIMD ( AndSIMD( *pHitMask, onesMask ), *pHitMask ) );
|
|
}
|
|
|
|
fltx4 GetCoverage()
|
|
{
|
|
return m_coverage;
|
|
}
|
|
|
|
fltx4 GetFractionVisible()
|
|
{
|
|
return SubSIMD ( Four_Ones, m_coverage );
|
|
}
|
|
|
|
fltx4 m_coverage;
|
|
};
|
|
|
|
// this will sample the texture to get a coverage at the ray intersection point
|
|
class CCoverageCountTexture : public CCoverageCount
|
|
{
|
|
public:
|
|
virtual bool VisitTriangle_ShouldContinue( const TriIntersectData_t &triangle, const FourRays &rays, fltx4 *pHitMask, fltx4 *b0, fltx4 *b1, fltx4 *b2, int32 hitID )
|
|
{
|
|
int sign = TestSignSIMD( *pHitMask );
|
|
float addedCoverage[4];
|
|
for ( int s = 0; s < 4; s++)
|
|
{
|
|
addedCoverage[s] = 0.0f;
|
|
if ( ( sign >> s) & 0x1 )
|
|
{
|
|
addedCoverage[s] = ComputeCoverageFromTexture( b0->m128_f32[s], b1->m128_f32[s], b2->m128_f32[s], hitID );
|
|
}
|
|
}
|
|
m_coverage = AddSIMD( m_coverage, LoadUnalignedSIMD( addedCoverage ) );
|
|
m_coverage = MinSIMD( m_coverage, Four_Ones );
|
|
fltx4 onesMask = CmpEqSIMD( m_coverage, Four_Ones );
|
|
|
|
// we should continue if the ones that hit the triangle have onesMask set to zero
|
|
// so hitMask & onesMask != hitMask
|
|
// so hitMask & onesMask == hitMask means we're done
|
|
// so ts(hitMask & onesMask == hitMask) != 0xF says go on
|
|
return 0xF != TestSignSIMD ( CmpEqSIMD ( AndSIMD( *pHitMask, onesMask ), *pHitMask ) );
|
|
}
|
|
};
|
|
|
|
void TestLine( const FourVectors& start, const FourVectors& stop,
|
|
fltx4 *pFractionVisible, int static_prop_index_to_ignore )
|
|
{
|
|
FourRays myrays;
|
|
myrays.origin = start;
|
|
myrays.direction = stop;
|
|
myrays.direction -= myrays.origin;
|
|
fltx4 len = myrays.direction.length();
|
|
myrays.direction *= ReciprocalSIMD( len );
|
|
|
|
RayTracingResult rt_result;
|
|
CCoverageCountTexture coverageCallback;
|
|
|
|
g_RtEnv.Trace4Rays(myrays, Four_Zeros, len, &rt_result, TRACE_ID_STATICPROP | static_prop_index_to_ignore, g_bTextureShadows ? &coverageCallback : 0 );
|
|
|
|
// Assume we can see the targets unless we get hits
|
|
float visibility[4];
|
|
for ( int i = 0; i < 4; i++ )
|
|
{
|
|
visibility[i] = 1.0f;
|
|
if ( ( rt_result.HitIds[i] != -1 ) &&
|
|
( rt_result.HitDistance.m128_f32[i] < len.m128_f32[i] ) )
|
|
{
|
|
visibility[i] = 0.0f;
|
|
}
|
|
}
|
|
*pFractionVisible = LoadUnalignedSIMD( visibility );
|
|
if ( g_bTextureShadows )
|
|
*pFractionVisible = MinSIMD( *pFractionVisible, coverageCallback.GetFractionVisible() );
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
================
|
|
DM_ClipBoxToBrush
|
|
================
|
|
*/
|
|
void DM_ClipBoxToBrush( CToolTrace *trace, const Vector& mins, const Vector& maxs, const Vector& p1, const Vector& p2,
|
|
dbrush_t *brush)
|
|
{
|
|
dplane_t *plane, *clipplane;
|
|
float dist;
|
|
Vector ofs;
|
|
float d1, d2;
|
|
float f;
|
|
dbrushside_t *side, *leadside;
|
|
|
|
if (!brush->numsides)
|
|
return;
|
|
|
|
float enterfrac = NEVER_UPDATED;
|
|
float leavefrac = 1.f;
|
|
clipplane = NULL;
|
|
|
|
bool getout = false;
|
|
bool startout = false;
|
|
leadside = NULL;
|
|
|
|
// Loop interchanged, so we don't have to check trace->ispoint every side.
|
|
if ( !trace->ispoint )
|
|
{
|
|
for (int i=0 ; i<brush->numsides ; ++i)
|
|
{
|
|
side = &dbrushsides[brush->firstside+i];
|
|
plane = dplanes + side->planenum;
|
|
|
|
// FIXME: special case for axial
|
|
|
|
// general box case
|
|
// push the plane out apropriately for mins/maxs
|
|
|
|
// FIXME: use signbits into 8 way lookup for each mins/maxs
|
|
ofs.x = (plane->normal.x < 0) ? maxs.x : mins.x;
|
|
ofs.y = (plane->normal.y < 0) ? maxs.y : mins.y;
|
|
ofs.z = (plane->normal.z < 0) ? maxs.z : mins.z;
|
|
// for (j=0 ; j<3 ; j++)
|
|
// {
|
|
// Set signmask to either 0 if the sign is negative, or 0xFFFFFFFF is the sign is positive:
|
|
//int signmask = (((*(int *)&(plane->normal[j]))&0x80000000) >> 31) - 1;
|
|
|
|
//float temp = maxs[j];
|
|
//*(int *)&(ofs[j]) = (~signmask) & (*(int *)&temp);
|
|
//float temp1 = mins[j];
|
|
//*(int *)&(ofs[j]) |= (signmask) & (*(int *)&temp1);
|
|
// }
|
|
dist = DotProduct (ofs, plane->normal);
|
|
dist = plane->dist - dist;
|
|
|
|
d1 = DotProduct (p1, plane->normal) - dist;
|
|
d2 = DotProduct (p2, plane->normal) - dist;
|
|
|
|
// if completely in front of face, no intersection
|
|
if (d1 > 0 && d2 > 0)
|
|
return;
|
|
|
|
if (d2 > 0)
|
|
getout = true; // endpoint is not in solid
|
|
if (d1 > 0)
|
|
startout = true;
|
|
|
|
if (d1 <= 0 && d2 <= 0)
|
|
continue;
|
|
|
|
// crosses face
|
|
if (d1 > d2)
|
|
{ // enter
|
|
f = (d1-DIST_EPSILON) / (d1-d2);
|
|
if (f > enterfrac)
|
|
{
|
|
enterfrac = f;
|
|
clipplane = plane;
|
|
leadside = side;
|
|
}
|
|
}
|
|
else
|
|
{ // leave
|
|
f = (d1+DIST_EPSILON) / (d1-d2);
|
|
if (f < leavefrac)
|
|
leavefrac = f;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int i=0 ; i<brush->numsides ; ++i)
|
|
{
|
|
side = &dbrushsides[brush->firstside+i];
|
|
plane = dplanes + side->planenum;
|
|
|
|
// FIXME: special case for axial
|
|
|
|
// special point case
|
|
// don't ray trace against bevel planes
|
|
if( side->bevel == 1 )
|
|
continue;
|
|
|
|
dist = plane->dist;
|
|
d1 = DotProduct (p1, plane->normal) - dist;
|
|
d2 = DotProduct (p2, plane->normal) - dist;
|
|
|
|
// if completely in front of face, no intersection
|
|
if (d1 > 0 && d2 > 0)
|
|
return;
|
|
|
|
if (d2 > 0)
|
|
getout = true; // endpoint is not in solid
|
|
if (d1 > 0)
|
|
startout = true;
|
|
|
|
if (d1 <= 0 && d2 <= 0)
|
|
continue;
|
|
|
|
// crosses face
|
|
if (d1 > d2)
|
|
{ // enter
|
|
f = (d1-DIST_EPSILON) / (d1-d2);
|
|
if (f > enterfrac)
|
|
{
|
|
enterfrac = f;
|
|
clipplane = plane;
|
|
leadside = side;
|
|
}
|
|
}
|
|
else
|
|
{ // leave
|
|
f = (d1+DIST_EPSILON) / (d1-d2);
|
|
if (f < leavefrac)
|
|
leavefrac = f;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
if (!startout)
|
|
{ // original point was inside brush
|
|
trace->startsolid = true;
|
|
if (!getout)
|
|
trace->allsolid = true;
|
|
return;
|
|
}
|
|
if (enterfrac < leavefrac)
|
|
{
|
|
if (enterfrac > NEVER_UPDATED && enterfrac < trace->fraction)
|
|
{
|
|
if (enterfrac < 0)
|
|
enterfrac = 0;
|
|
trace->fraction = enterfrac;
|
|
trace->plane.dist = clipplane->dist;
|
|
trace->plane.normal = clipplane->normal;
|
|
trace->plane.type = clipplane->type;
|
|
if (leadside->texinfo!=-1)
|
|
trace->surface = &texinfo[leadside->texinfo];
|
|
else
|
|
trace->surface = 0;
|
|
trace->contents = brush->contents;
|
|
}
|
|
}
|
|
}
|
|
|
|
void TestLine_DoesHitSky( FourVectors const& start, FourVectors const& stop,
|
|
fltx4 *pFractionVisible, bool canRecurse, int static_prop_to_skip, bool bDoDebug )
|
|
{
|
|
FourRays myrays;
|
|
myrays.origin = start;
|
|
myrays.direction = stop;
|
|
myrays.direction -= myrays.origin;
|
|
fltx4 len = myrays.direction.length();
|
|
myrays.direction *= ReciprocalSIMD( len );
|
|
RayTracingResult rt_result;
|
|
CCoverageCountTexture coverageCallback;
|
|
|
|
g_RtEnv.Trace4Rays(myrays, Four_Zeros, len, &rt_result, TRACE_ID_STATICPROP | static_prop_to_skip, g_bTextureShadows? &coverageCallback : 0);
|
|
|
|
if ( bDoDebug )
|
|
{
|
|
WriteTrace( "trace.txt", myrays, rt_result );
|
|
}
|
|
|
|
float aOcclusion[4];
|
|
for ( int i = 0; i < 4; i++ )
|
|
{
|
|
aOcclusion[i] = 0.0f;
|
|
if ( ( rt_result.HitIds[i] != -1 ) &&
|
|
( rt_result.HitDistance.m128_f32[i] < len.m128_f32[i] ) )
|
|
{
|
|
int id = g_RtEnv.OptimizedTriangleList[rt_result.HitIds[i]].m_Data.m_IntersectData.m_nTriangleID;
|
|
if ( !( id & TRACE_ID_SKY ) )
|
|
aOcclusion[i] = 1.0f;
|
|
}
|
|
}
|
|
fltx4 occlusion = LoadUnalignedSIMD( aOcclusion );
|
|
if (g_bTextureShadows)
|
|
occlusion = MaxSIMD ( occlusion, coverageCallback.GetCoverage() );
|
|
|
|
bool fullyOccluded = ( TestSignSIMD( CmpGeSIMD( occlusion, Four_Ones ) ) == 0xF );
|
|
|
|
// if we hit sky, and we're not in a sky camera's area, try clipping into the 3D sky boxes
|
|
if ( (! fullyOccluded) && canRecurse && (! g_bNoSkyRecurse ) )
|
|
{
|
|
FourVectors dir = stop;
|
|
dir -= start;
|
|
dir.VectorNormalize();
|
|
|
|
int leafIndex = -1;
|
|
leafIndex = PointLeafnum( start.Vec( 0 ) );
|
|
if ( leafIndex >= 0 )
|
|
{
|
|
int area = dleafs[leafIndex].area;
|
|
if (area >= 0 && area < numareas)
|
|
{
|
|
if (area_sky_cameras[area] < 0)
|
|
{
|
|
int cam;
|
|
for (cam = 0; cam < num_sky_cameras; ++cam)
|
|
{
|
|
FourVectors skystart, skytrans, skystop;
|
|
skystart.DuplicateVector( sky_cameras[cam].origin );
|
|
skystop = start;
|
|
skystop *= sky_cameras[cam].world_to_sky;
|
|
skystart += skystop;
|
|
|
|
skystop = dir;
|
|
skystop *= MAX_TRACE_LENGTH;
|
|
skystop += skystart;
|
|
TestLine_DoesHitSky ( skystart, skystop, pFractionVisible, false, static_prop_to_skip, bDoDebug );
|
|
occlusion = AddSIMD ( occlusion, Four_Ones );
|
|
occlusion = SubSIMD ( occlusion, *pFractionVisible );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
occlusion = MaxSIMD( occlusion, Four_Zeros );
|
|
occlusion = MinSIMD( occlusion, Four_Ones );
|
|
*pFractionVisible = SubSIMD( Four_Ones, occlusion );
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
int PointLeafnum_r( const Vector &point, int ndxNode )
|
|
{
|
|
// while loop here is to avoid recursion overhead
|
|
while( ndxNode >= 0 )
|
|
{
|
|
dnode_t *pNode = dnodes + ndxNode;
|
|
dplane_t *pPlane = dplanes + pNode->planenum;
|
|
|
|
float dist;
|
|
if( pPlane->type < 3 )
|
|
{
|
|
dist = point[pPlane->type] - pPlane->dist;
|
|
}
|
|
else
|
|
{
|
|
dist = DotProduct( pPlane->normal, point ) - pPlane->dist;
|
|
}
|
|
|
|
if( dist < 0.0f )
|
|
{
|
|
ndxNode = pNode->children[1];
|
|
}
|
|
else
|
|
{
|
|
ndxNode = pNode->children[0];
|
|
}
|
|
}
|
|
|
|
return ( -1 - ndxNode );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
int PointLeafnum( const Vector &point )
|
|
{
|
|
return PointLeafnum_r( point, 0 );
|
|
}
|
|
|
|
// this iterates the list of entities looking for _vradshadows 1
|
|
// each brush entity containing this key is added to the raytracing environment
|
|
// as a triangle soup model.
|
|
|
|
dmodel_t *BrushmodelForEntity( entity_t *pEntity )
|
|
{
|
|
const char *pModelname = ValueForKey( pEntity, "model" );
|
|
if ( Q_strlen(pModelname) > 1 )
|
|
{
|
|
int modelIndex = atol( pModelname + 1 );
|
|
if ( modelIndex > 0 && modelIndex < nummodels )
|
|
{
|
|
return &dmodels[modelIndex];
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void AddBrushToRaytraceEnvironment( dbrush_t *pBrush, const VMatrix &xform )
|
|
{
|
|
if ( !( pBrush->contents & MASK_OPAQUE ) )
|
|
return;
|
|
|
|
Vector v0, v1, v2;
|
|
for (int i = 0; i < pBrush->numsides; i++ )
|
|
{
|
|
dbrushside_t *side = &dbrushsides[pBrush->firstside + i];
|
|
dplane_t *plane = &dplanes[side->planenum];
|
|
texinfo_t *tx = &texinfo[side->texinfo];
|
|
winding_t *w = BaseWindingForPlane (plane->normal, plane->dist);
|
|
|
|
if ( tx->flags & SURF_SKY || side->dispinfo )
|
|
continue;
|
|
|
|
for (int j=0 ; j<pBrush->numsides && w; j++)
|
|
{
|
|
if (i == j)
|
|
continue;
|
|
dbrushside_t *pOtherSide = &dbrushsides[pBrush->firstside + j];
|
|
if (pOtherSide->bevel)
|
|
continue;
|
|
plane = &dplanes[pOtherSide->planenum^1];
|
|
ChopWindingInPlace (&w, plane->normal, plane->dist, 0);
|
|
}
|
|
if ( w )
|
|
{
|
|
for ( int j = 2; j < w->numpoints; j++ )
|
|
{
|
|
v0 = xform.VMul4x3(w->p[0]);
|
|
v1 = xform.VMul4x3(w->p[j-1]);
|
|
v2 = xform.VMul4x3(w->p[j]);
|
|
Vector fullCoverage;
|
|
fullCoverage.x = 1.0f;
|
|
g_RtEnv.AddTriangle(TRACE_ID_OPAQUE, v0, v1, v2, fullCoverage);
|
|
}
|
|
FreeWinding( w );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// recurse the bsp and build a list of brushes at the leaves under this node
|
|
void GetBrushes_r( int node, CUtlVector<int> &list )
|
|
{
|
|
if ( node < 0 )
|
|
{
|
|
int leafIndex = -1 - node;
|
|
// Add the solids in the leaf
|
|
for ( int i = 0; i < dleafs[leafIndex].numleafbrushes; i++ )
|
|
{
|
|
int brushIndex = dleafbrushes[dleafs[leafIndex].firstleafbrush + i];
|
|
if ( list.Find(brushIndex) < 0 )
|
|
{
|
|
list.AddToTail( brushIndex );
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// recurse
|
|
dnode_t *pnode = dnodes + node;
|
|
|
|
GetBrushes_r( pnode->children[0], list );
|
|
GetBrushes_r( pnode->children[1], list );
|
|
}
|
|
}
|
|
|
|
|
|
void AddBrushes( dmodel_t *pModel, const VMatrix &xform )
|
|
{
|
|
if ( pModel )
|
|
{
|
|
CUtlVector<int> brushList;
|
|
GetBrushes_r( pModel->headnode, brushList );
|
|
for ( int i = 0; i < brushList.Count(); i++ )
|
|
{
|
|
int ndxBrush = brushList[i];
|
|
AddBrushToRaytraceEnvironment( &dbrushes[ndxBrush], xform );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Adds the brush entities that cast shadows to the raytrace environment
|
|
void ExtractBrushEntityShadowCasters()
|
|
{
|
|
for ( int i = 0; i < num_entities; i++ )
|
|
{
|
|
if ( IntForKey( &entities[i], "vrad_brush_cast_shadows" ) != 0 )
|
|
{
|
|
Vector origin;
|
|
QAngle angles;
|
|
GetVectorForKey( &entities[i], "origin", origin );
|
|
GetAnglesForKey( &entities[i], "angles", angles );
|
|
VMatrix xform;
|
|
xform.SetupMatrixOrgAngles( origin, angles );
|
|
AddBrushes( BrushmodelForEntity( &entities[i] ), xform );
|
|
}
|
|
}
|
|
}
|
|
|
|
void AddBrushesForRayTrace( void )
|
|
{
|
|
if ( !nummodels )
|
|
return;
|
|
|
|
VMatrix identity;
|
|
identity.Identity();
|
|
|
|
CUtlVector<int> brushList;
|
|
GetBrushes_r ( dmodels[0].headnode, brushList );
|
|
|
|
for ( int i = 0; i < brushList.Size(); i++ )
|
|
{
|
|
dbrush_t *brush = &dbrushes[brushList[i]];
|
|
AddBrushToRaytraceEnvironment ( brush, identity );
|
|
}
|
|
|
|
for ( int i = 0; i < dmodels[0].numfaces; i++ )
|
|
{
|
|
int ndxFace = dmodels[0].firstface + i;
|
|
dface_t *face = &g_pFaces[ndxFace];
|
|
|
|
texinfo_t *tx = &texinfo[face->texinfo];
|
|
if ( !( tx->flags & SURF_SKY ) )
|
|
continue;
|
|
|
|
Vector points[MAX_POINTS_ON_WINDING];
|
|
|
|
for ( int j = 0; j < face->numedges; j++ )
|
|
{
|
|
if ( j >= MAX_POINTS_ON_WINDING )
|
|
Error( "***** ERROR! MAX_POINTS_ON_WINDING reached!" );
|
|
|
|
if ( face->firstedge + j >= ARRAYSIZE( dsurfedges ) )
|
|
Error( "***** ERROR! face->firstedge + j >= ARRAYSIZE( dsurfedges )!" );
|
|
|
|
int surfEdge = dsurfedges[face->firstedge + j];
|
|
unsigned short v;
|
|
|
|
if (surfEdge < 0)
|
|
v = dedges[-surfEdge].v[1];
|
|
else
|
|
v = dedges[surfEdge].v[0];
|
|
|
|
if ( v >= ARRAYSIZE( dvertexes ) )
|
|
Error( "***** ERROR! v(%u) >= ARRAYSIZE( dvertexes(%d) )!", ( unsigned int )v, ARRAYSIZE( dvertexes ) );
|
|
|
|
dvertex_t *dv = &dvertexes[v];
|
|
points[j] = dv->point;
|
|
}
|
|
|
|
for ( int j = 2; j < face->numedges; j++ )
|
|
{
|
|
Vector fullCoverage;
|
|
fullCoverage.x = 1.0f;
|
|
g_RtEnv.AddTriangle ( TRACE_ID_SKY, points[0], points[j - 1], points[j], fullCoverage );
|
|
}
|
|
}
|
|
}
|