1994 lines
52 KiB
C++
1994 lines
52 KiB
C++
//========= Copyright Valve Corporation, All rights reserved. ============//
|
|
//
|
|
// Purpose:
|
|
//
|
|
// $NoKeywords: $
|
|
//=============================================================================//
|
|
|
|
#include "BuildDisp.h"
|
|
#include "DispColl.h"
|
|
#include "tier0/dbg.h"
|
|
|
|
//=============================================================================
|
|
|
|
const float CDispCollTree::COLLISION_EPSILON = 0.01f;
|
|
const float CDispCollTree::ONE_MINUS_COLLISION_EPSILON = 1.0f - COLLISION_EPSILON;
|
|
|
|
//=============================================================================
|
|
//
|
|
// Displacement Collision Triangle Functions
|
|
//
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: initialize the displacement triangles
|
|
//-----------------------------------------------------------------------------
|
|
void CDispCollTri::Init( void )
|
|
{
|
|
for( int i = 0; i < 3; i++ )
|
|
{
|
|
m_Points[i].x = 0.0f; m_Points[i].y = 0.0f; m_Points[i].z = 0.0f;
|
|
m_PointNormals[i].x = 0.0f; m_PointNormals[i].y = 0.0f; m_PointNormals[i].z = 0.0f;
|
|
}
|
|
|
|
m_Normal.x = 0.0f; m_Normal.y = 0.0f; m_Normal.z = 0.0f;
|
|
m_Distance = 0.0f;
|
|
|
|
m_ProjAxes[0] = -1;
|
|
m_ProjAxes[1] = -1;
|
|
|
|
m_bIntersect = false;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
inline void CDispCollTri::SetPoint( int index, Vector const &vert )
|
|
{
|
|
Assert( index >= 0 );
|
|
Assert( index < 3 );
|
|
|
|
m_Points[index].x = vert[0];
|
|
m_Points[index].y = vert[1];
|
|
m_Points[index].z = vert[2];
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
inline void CDispCollTri::SetPointNormal( int index, Vector const &normal )
|
|
{
|
|
Assert( index >= 0 );
|
|
Assert( index < 3 );
|
|
|
|
m_PointNormals[index].x = normal[0];
|
|
m_PointNormals[index].y = normal[1];
|
|
m_PointNormals[index].z = normal[2];
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
void CDispCollTri::CalcPlane( void )
|
|
{
|
|
//
|
|
// calculate the plane normal and distance
|
|
//
|
|
Vector segment1, segment2, cross;
|
|
|
|
segment1 = m_Points[1] - m_Points[0];
|
|
segment2 = m_Points[2] - m_Points[0];
|
|
cross = segment1.Cross( segment2 );
|
|
m_Normal = cross;
|
|
VectorNormalize(m_Normal);
|
|
|
|
m_Distance = m_Normal.Dot( m_Points[0] );
|
|
|
|
//
|
|
// calculate the projection axes
|
|
//
|
|
if( FloatMakePositive( m_Normal[0] ) > FloatMakePositive( m_Normal[1] ) )
|
|
{
|
|
if( FloatMakePositive( m_Normal[0] ) > FloatMakePositive( m_Normal[2] ) )
|
|
{
|
|
m_ProjAxes[0] = 1;
|
|
m_ProjAxes[1] = 2;
|
|
}
|
|
else
|
|
{
|
|
m_ProjAxes[0] = 0;
|
|
m_ProjAxes[1] = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( FloatMakePositive( m_Normal[1] ) > FloatMakePositive( m_Normal[2] ) )
|
|
{
|
|
m_ProjAxes[0] = 0;
|
|
m_ProjAxes[1] = 2;
|
|
}
|
|
else
|
|
{
|
|
m_ProjAxes[0] = 0;
|
|
m_ProjAxes[1] = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
inline void CDispCollTri::SetIntersect( bool bIntersect )
|
|
{
|
|
m_bIntersect = bIntersect;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
inline bool CDispCollTri::IsIntersect( void )
|
|
{
|
|
return m_bIntersect;
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
//
|
|
// Displacement Collision Node Functions
|
|
//
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: constructor
|
|
//-----------------------------------------------------------------------------
|
|
CDispCollNode::CDispCollNode()
|
|
{
|
|
m_Bounds[0].x = m_Bounds[0].y = m_Bounds[0].z = 99999.9f;
|
|
m_Bounds[1].x = m_Bounds[1].y = m_Bounds[1].z = -99999.9f;
|
|
|
|
m_Tris[0].Init();
|
|
m_Tris[1].Init();
|
|
|
|
m_bIsLeaf = false;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
inline bool CDispCollNode::IsLeaf( void )
|
|
{
|
|
return m_bIsLeaf;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
inline void CDispCollNode::SetBounds( Vector const &bMin, Vector const &bMax )
|
|
{
|
|
m_Bounds[0] = bMin;
|
|
m_Bounds[1] = bMax;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
inline void CDispCollNode::GetBounds( Vector &bMin, Vector &bMax )
|
|
{
|
|
bMin = m_Bounds[0];
|
|
bMax = m_Bounds[1];
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
//
|
|
// Displacement Collision Tree Functions
|
|
//
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: constructor
|
|
//-----------------------------------------------------------------------------
|
|
CDispCollTree::CDispCollTree()
|
|
{
|
|
m_Power = 0;
|
|
|
|
m_NodeCount = 0;
|
|
m_pNodes = NULL;
|
|
|
|
InitAABBData();
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: deconstructor
|
|
//-----------------------------------------------------------------------------
|
|
CDispCollTree::~CDispCollTree()
|
|
{
|
|
FreeNodes();
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
void CDispCollTree::InitAABBData( void )
|
|
{
|
|
m_AABBNormals[0].x = -1.0f; m_AABBNormals[0].y = 0.0f; m_AABBNormals[0].z = 0.0f;
|
|
m_AABBNormals[1].x = 1.0f; m_AABBNormals[1].y = 0.0f; m_AABBNormals[1].z = 0.0f;
|
|
|
|
m_AABBNormals[2].x = 0.0f; m_AABBNormals[2].y = -1.0f; m_AABBNormals[2].z = 0.0f;
|
|
m_AABBNormals[3].x = 0.0f; m_AABBNormals[3].y = 1.0f; m_AABBNormals[3].z = 0.0f;
|
|
|
|
m_AABBNormals[4].x = 0.0f; m_AABBNormals[4].y = 0.0f; m_AABBNormals[4].z = -1.0f;
|
|
m_AABBNormals[5].x = 0.0f; m_AABBNormals[5].y = 0.0f; m_AABBNormals[5].z = 1.0f;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
void CDispCollTree::CalcBounds( CDispCollNode *pNode, int nodeIndex )
|
|
{
|
|
Vector bounds[2];
|
|
bounds[0].Init( 99999.9f, 99999.9f, 99999.9f );
|
|
bounds[1].Init( -99999.9f, -99999.9f, -99999.9f );
|
|
|
|
//
|
|
// handle leaves differently -- bounding volume defined by triangles
|
|
//
|
|
if( pNode->IsLeaf() )
|
|
{
|
|
for( int i = 0; i < 2; i++ )
|
|
{
|
|
for( int j = 0; j < 3; j++ )
|
|
{
|
|
//
|
|
// minimum
|
|
//
|
|
if( bounds[0].x > pNode->m_Tris[i].m_Points[j].x ) { bounds[0].x = pNode->m_Tris[i].m_Points[j].x; }
|
|
if( bounds[0].y > pNode->m_Tris[i].m_Points[j].y ) { bounds[0].y = pNode->m_Tris[i].m_Points[j].y; }
|
|
if( bounds[0].z > pNode->m_Tris[i].m_Points[j].z ) { bounds[0].z = pNode->m_Tris[i].m_Points[j].z; }
|
|
|
|
//
|
|
// maximum
|
|
//
|
|
if( bounds[1].x < pNode->m_Tris[i].m_Points[j].x ) { bounds[1].x = pNode->m_Tris[i].m_Points[j].x; }
|
|
if( bounds[1].y < pNode->m_Tris[i].m_Points[j].y ) { bounds[1].y = pNode->m_Tris[i].m_Points[j].y; }
|
|
if( bounds[1].z < pNode->m_Tris[i].m_Points[j].z ) { bounds[1].z = pNode->m_Tris[i].m_Points[j].z; }
|
|
}
|
|
}
|
|
}
|
|
//
|
|
// bounding volume defined by maxima and minima of children volumes
|
|
//
|
|
else
|
|
{
|
|
for( int i = 0; i < 4; i++ )
|
|
{
|
|
int childIndex = GetChildNode( nodeIndex, i );
|
|
CDispCollNode *pChildNode = &m_pNodes[childIndex];
|
|
|
|
Vector childBounds[2];
|
|
pChildNode->GetBounds( childBounds[0], childBounds[1] );
|
|
|
|
//
|
|
// minimum
|
|
//
|
|
if( bounds[0].x > childBounds[0].x ) { bounds[0].x = childBounds[0].x; }
|
|
if( bounds[0].y > childBounds[0].y ) { bounds[0].y = childBounds[0].y; }
|
|
if( bounds[0].z > childBounds[0].z ) { bounds[0].z = childBounds[0].z; }
|
|
|
|
//
|
|
// maximum
|
|
//
|
|
if( bounds[1].x < childBounds[1].x ) { bounds[1].x = childBounds[1].x; }
|
|
if( bounds[1].y < childBounds[1].y ) { bounds[1].y = childBounds[1].y; }
|
|
if( bounds[1].z < childBounds[1].z ) { bounds[1].z = childBounds[1].z; }
|
|
}
|
|
}
|
|
|
|
pNode->SetBounds( bounds[0], bounds[1] );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
void CDispCollTree::CreateNodes_r( CCoreDispInfo *pDisp, int nodeIndex, int termLevel )
|
|
{
|
|
int nodeLevel = GetNodeLevel( nodeIndex );
|
|
|
|
//
|
|
// terminating condition -- set node info (leaf or otherwise)
|
|
//
|
|
if( nodeLevel == termLevel )
|
|
{
|
|
CDispCollNode *pNode = &m_pNodes[nodeIndex];
|
|
CalcBounds( pNode, nodeIndex );
|
|
|
|
return;
|
|
}
|
|
|
|
//
|
|
// recurse into children
|
|
//
|
|
for( int i = 0; i < 4; i++ )
|
|
{
|
|
CreateNodes_r( pDisp, GetChildNode( nodeIndex, i ), termLevel );
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
void CDispCollTree::CreateNodes( CCoreDispInfo *pDisp )
|
|
{
|
|
//
|
|
// create all nodes in tree
|
|
//
|
|
int power = pDisp->GetPower() + 1;
|
|
for( int level = power; level > 0; level-- )
|
|
{
|
|
CreateNodes_r( pDisp, 0 /* rootIndex */, level );
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
int CDispCollTree::GetNodeIndexFromComponents( int x, int y )
|
|
{
|
|
int index = 0;
|
|
|
|
// Interleave bits from the x and y values to create the index:
|
|
|
|
for( int shift = 0; x != 0; shift += 2, x >>= 1 )
|
|
{
|
|
index |= ( x & 1 ) << shift;
|
|
}
|
|
|
|
for( shift = 1; y != 0; shift += 2, y >>= 1 )
|
|
{
|
|
index |= ( y & 1 ) << shift;
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
void CDispCollTree::InitLeaves( CCoreDispInfo *pDisp )
|
|
{
|
|
//
|
|
// get power and width and displacement surface
|
|
//
|
|
int power = pDisp->GetPower();
|
|
int width = pDisp->GetWidth();
|
|
|
|
//
|
|
// get leaf indices
|
|
//
|
|
int startIndex = CalcNodeCount( power - 1 );
|
|
int endIndex = CalcNodeCount( power );
|
|
|
|
for( int index = startIndex; index < endIndex; index++ )
|
|
{
|
|
//
|
|
// create triangles at leaves
|
|
//
|
|
int x = ( index - startIndex ) % ( width - 1 );
|
|
int y = ( index - startIndex ) / ( width - 1 );
|
|
|
|
int nodeIndex = GetNodeIndexFromComponents( x, y );
|
|
nodeIndex += startIndex;
|
|
|
|
Vector vert;
|
|
Vector normal;
|
|
|
|
//
|
|
// tri 1
|
|
//
|
|
pDisp->GetVert( x + ( y * width ), vert );
|
|
pDisp->GetNormal( x + ( y * width ), normal );
|
|
m_pNodes[nodeIndex].m_Tris[0].SetPoint( 0, vert );
|
|
m_pNodes[nodeIndex].m_Tris[0].SetPointNormal( 0, normal );
|
|
|
|
pDisp->GetVert( x + ( ( y + 1 ) * width ), vert );
|
|
pDisp->GetNormal( x + ( ( y + 1 ) * width ), normal );
|
|
m_pNodes[nodeIndex].m_Tris[0].SetPoint( 1, vert );
|
|
m_pNodes[nodeIndex].m_Tris[0].SetPointNormal( 1, normal );
|
|
|
|
pDisp->GetVert( ( x + 1 ) + ( y * width ), vert );
|
|
pDisp->GetNormal( ( x + 1 ) + ( y * width ), normal );
|
|
m_pNodes[nodeIndex].m_Tris[0].SetPoint( 2, vert );
|
|
m_pNodes[nodeIndex].m_Tris[0].SetPointNormal( 2, normal );
|
|
|
|
m_pNodes[nodeIndex].m_Tris[0].CalcPlane();
|
|
|
|
//
|
|
// tri 2
|
|
//
|
|
pDisp->GetVert( ( x + 1 ) + ( y * width ), vert );
|
|
pDisp->GetNormal( ( x + 1 ) + ( y * width ), normal );
|
|
m_pNodes[nodeIndex].m_Tris[1].SetPoint( 0, vert );
|
|
m_pNodes[nodeIndex].m_Tris[1].SetPointNormal( 0, normal );
|
|
|
|
pDisp->GetVert( x + ( ( y + 1 ) * width ), vert );
|
|
pDisp->GetNormal( x + ( ( y + 1 ) * width ), normal );
|
|
m_pNodes[nodeIndex].m_Tris[1].SetPoint( 1, vert );
|
|
m_pNodes[nodeIndex].m_Tris[1].SetPointNormal( 1, normal );
|
|
|
|
pDisp->GetVert( ( x + 1 ) + ( ( y + 1 ) * width ), vert );
|
|
pDisp->GetNormal( ( x + 1 ) + ( ( y + 1 ) * width ), normal );
|
|
m_pNodes[nodeIndex].m_Tris[1].SetPoint( 2, vert );
|
|
m_pNodes[nodeIndex].m_Tris[1].SetPointNormal( 2, normal );
|
|
|
|
m_pNodes[nodeIndex].m_Tris[1].CalcPlane();
|
|
|
|
// set node as leaf
|
|
m_pNodes[nodeIndex].m_bIsLeaf = true;
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: allocate and initialize the displacement collision tree
|
|
// Input: power - size of the displacement surface
|
|
// Output: bool - success? (true/false)
|
|
//-----------------------------------------------------------------------------
|
|
bool CDispCollTree::Create( CCoreDispInfo *pDisp )
|
|
{
|
|
//
|
|
// calculate the number of nodes needed given the size of the displacement
|
|
//
|
|
m_Power = pDisp->GetPower();
|
|
m_NodeCount = CalcNodeCount( m_Power );
|
|
|
|
//
|
|
// allocate tree space
|
|
//
|
|
if( !AllocNodes( m_NodeCount ) )
|
|
return false;
|
|
|
|
// initialize leaves
|
|
InitLeaves( pDisp );
|
|
|
|
// create tree nodes
|
|
CreateNodes( pDisp );
|
|
|
|
// tree successfully created!
|
|
return true;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: allocate memory for the displacement collision tree
|
|
// Input: nodeCount - number of nodes to allocate
|
|
// Output: bool - success? (true/false)
|
|
//-----------------------------------------------------------------------------
|
|
bool CDispCollTree::AllocNodes( int nodeCount )
|
|
{
|
|
// sanity check
|
|
Assert( nodeCount != 0 );
|
|
|
|
m_pNodes = new CDispCollNode[nodeCount];
|
|
if( !m_pNodes )
|
|
return false;
|
|
|
|
// tree successfully allocated!
|
|
return true;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: release allocated memory for displacement collision tree
|
|
//-----------------------------------------------------------------------------
|
|
void CDispCollTree::FreeNodes( void )
|
|
{
|
|
if( m_pNodes )
|
|
{
|
|
delete [] m_pNodes;
|
|
m_pNodes = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: calculate the number of tree nodes given the size of the
|
|
// displacement surface
|
|
// Input: power - size of the displacement surface
|
|
// Output: int - the number of tree nodes
|
|
//-----------------------------------------------------------------------------
|
|
inline int CDispCollTree::CalcNodeCount( int power )
|
|
{
|
|
// power range [2...4]
|
|
Assert( power > 0 );
|
|
Assert( power < 5 );
|
|
|
|
return ( ( 1 << ( ( power + 1 ) << 1 ) ) / 3 );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: get the parent node index given the current node
|
|
// Input: nodeIndex - current node index
|
|
// Output: int - the index of the parent node
|
|
//-----------------------------------------------------------------------------
|
|
inline int CDispCollTree::GetParentNode( int nodeIndex )
|
|
{
|
|
// node range [0...m_NodeCount)
|
|
Assert( nodeIndex >= 0 );
|
|
Assert( nodeIndex < m_NodeCount );
|
|
|
|
// ( nodeIndex - 1 ) / 4
|
|
return ( ( nodeIndex - 1 ) >> 2 );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: get the child node index given the current node index and direction
|
|
// of the child (1 of 4)
|
|
// Input: nodeIndex - current node index
|
|
// direction - direction of the child ( [0...3] - SW, SE, NW, NE )
|
|
// Output: int - the index of the child node
|
|
//-----------------------------------------------------------------------------
|
|
inline int CDispCollTree::GetChildNode( int nodeIndex, int direction )
|
|
{
|
|
// node range [0...m_NodeCount)
|
|
Assert( nodeIndex >= 0 );
|
|
Assert( nodeIndex < m_NodeCount );
|
|
|
|
// ( nodeIndex * 4 ) + ( direction + 1 )
|
|
return ( ( nodeIndex << 2 ) + ( direction + 1 ) );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
inline int CDispCollTree::GetNodeLevel( int nodeIndex )
|
|
{
|
|
// node range [0...m_NodeCount)
|
|
Assert( nodeIndex >= 0 );
|
|
Assert( nodeIndex < m_NodeCount );
|
|
|
|
// level = 2^n + 1
|
|
if( nodeIndex == 0 ) { return 1; }
|
|
if( nodeIndex < 5 ) { return 2; }
|
|
if( nodeIndex < 21 ) { return 3; }
|
|
if( nodeIndex < 85 ) { return 4; }
|
|
if( nodeIndex < 341 ) { return 5; }
|
|
|
|
return -1;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
bool CDispCollTree::RayTriTest( Vector const &rayStart, Vector const &rayDir, float const rayLength,
|
|
CDispCollTri const *pTri, float *fraction )
|
|
{
|
|
const float DET_EPSILON = 0.001f;
|
|
const float DIST_EPSILON = 0.001f;
|
|
|
|
//
|
|
// calculate the edges
|
|
//
|
|
Vector edge1 = pTri->m_Points[1] - pTri->m_Points[0];
|
|
Vector edge2 = pTri->m_Points[2] - pTri->m_Points[0];
|
|
|
|
// Vector faceNormal = edge1.Cross( edge2 );
|
|
// Vector normNormal = faceNormal.Normalize();
|
|
|
|
//
|
|
// calculate the triangle's determinant
|
|
//
|
|
Vector pVec = rayDir.Cross( edge2 );
|
|
float det = pVec.Dot( edge1 );
|
|
|
|
// if determinant is zero -- ray lies in plane
|
|
if( ( det > -DET_EPSILON ) && ( det < DET_EPSILON ) )
|
|
return false;
|
|
|
|
//
|
|
// utility calculations - inverse determinant and distance from v0 to ray start
|
|
//
|
|
double invDet = 1.0f / det;
|
|
Vector tVec = rayStart - pTri->m_Points[0];
|
|
|
|
//
|
|
// calculate the U parameter and test bounds
|
|
//
|
|
double u = pVec.Dot( tVec ) * invDet;
|
|
if( ( u < 0.0f ) || ( u > 1.0f ) )
|
|
return false;
|
|
|
|
Vector qVec = tVec.Cross( edge1 );
|
|
|
|
//
|
|
// calculate the V parameter and test bounds
|
|
//
|
|
double v = qVec.Dot( rayDir ) * invDet;
|
|
if( ( v < 0.0f ) || ( ( u + v ) > 1.0f ) )
|
|
return false;
|
|
|
|
// calculate where ray intersects triangle
|
|
*fraction = qVec.Dot( edge2 ) * invDet;
|
|
*fraction /= rayLength;
|
|
|
|
if( ( *fraction < DIST_EPSILON ) || ( *fraction > ( 1.0f - DIST_EPSILON ) ) )
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
bool CDispCollTree::RayTriListTest( CDispCollTreeTempData *pTemp, CDispCollData *pData )
|
|
{
|
|
// save starting fraction -- to test for collision
|
|
float startFraction = pData->m_Fraction;
|
|
|
|
//
|
|
// calculate the ray
|
|
//
|
|
Vector seg = pData->m_EndPos - pData->m_StartPos;
|
|
Vector rayDir = seg;
|
|
float rayLength = VectorNormalize( rayDir );
|
|
|
|
//
|
|
// test ray against all triangles in list
|
|
//
|
|
for( int i = 0; i < pTemp->m_TriListCount; i++ )
|
|
{
|
|
float fraction = 1.0f;
|
|
bool bResult = RayTriTest( pData->m_StartPos, rayDir, rayLength, pTemp->m_ppTriList[i], &fraction );
|
|
if( !bResult )
|
|
continue;
|
|
|
|
if( pData->m_bOcclude )
|
|
{
|
|
return true;
|
|
}
|
|
|
|
if( fraction < pData->m_Fraction )
|
|
{
|
|
pData->m_Fraction = fraction;
|
|
pData->m_Normal = pTemp->m_ppTriList[i]->m_Normal;
|
|
pData->m_Distance = pTemp->m_ppTriList[i]->m_Distance;
|
|
}
|
|
}
|
|
|
|
// collision!
|
|
if( pData->m_Fraction < startFraction )
|
|
return true;
|
|
|
|
// no collision!
|
|
return false;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
bool CDispCollTree::RayAABBTest( CDispCollTreeTempData *pTemp, Vector &rayStart, Vector &rayEnd )
|
|
{
|
|
const float MY_DIST_EPSILON = 0.01f;
|
|
|
|
for( int i = 0; i < 6; i++ )
|
|
{
|
|
float dist1 = m_AABBNormals[i].Dot( rayStart ) - pTemp->m_AABBDistances[i];
|
|
float dist2 = m_AABBNormals[i].Dot( rayEnd ) - pTemp->m_AABBDistances[i];
|
|
|
|
//
|
|
// entry intersection point - move ray start up to intersection
|
|
//
|
|
if( ( dist1 > MY_DIST_EPSILON ) && ( dist2 < -MY_DIST_EPSILON ) )
|
|
{
|
|
float fraction = ( dist1 / ( dist1 - dist2 ) );
|
|
|
|
Vector segment, increment;
|
|
segment = ( rayEnd - rayStart ) * fraction;
|
|
increment = segment;
|
|
VectorNormalize(increment);
|
|
segment += increment;
|
|
rayStart += segment;
|
|
}
|
|
else if( ( dist1 > MY_DIST_EPSILON ) && ( dist2 > MY_DIST_EPSILON ) )
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
void CDispCollTree::CreatePlanesFromBounds( CDispCollTreeTempData *pTemp, Vector const &bbMin, Vector const &bbMax )
|
|
{
|
|
//
|
|
// note -- these never change!
|
|
//
|
|
// m_AABBNormals[0].x = -1;
|
|
// m_AABBNormals[1].x = 1;
|
|
|
|
// m_AABBNormals[2].y = -1;
|
|
// m_AABBNormals[3].y = 1;
|
|
|
|
// m_AABBNormals[4].z = -1;
|
|
// m_AABBNormals[5].z = 1;
|
|
|
|
pTemp->m_AABBDistances[0] = -bbMin.x;
|
|
pTemp->m_AABBDistances[1] = bbMax.x;
|
|
|
|
pTemp->m_AABBDistances[2] = -bbMin.y;
|
|
pTemp->m_AABBDistances[3] = bbMax.y;
|
|
|
|
pTemp->m_AABBDistances[4] = -bbMin.z;
|
|
pTemp->m_AABBDistances[5] = bbMax.z;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
void CDispCollTree::RayNodeTest_r( CDispCollTreeTempData *pTemp, int nodeIndex, Vector rayStart, Vector rayEnd )
|
|
{
|
|
// get the current node
|
|
CDispCollNode *pNode = &m_pNodes[nodeIndex];
|
|
|
|
//
|
|
// get node bounding box and create collision planes
|
|
//
|
|
Vector bounds[2];
|
|
pNode->GetBounds( bounds[0], bounds[1] );
|
|
CreatePlanesFromBounds( pTemp, bounds[0], bounds[1] );
|
|
|
|
bool bIntersect = RayAABBTest( pTemp, rayStart, rayEnd );
|
|
if( bIntersect )
|
|
{
|
|
// done -- add triangles to triangle list
|
|
if( pNode->IsLeaf() )
|
|
{
|
|
// Assert for now -- flush cache later!!!!!
|
|
Assert( pTemp->m_TriListCount >= 0 );
|
|
Assert( pTemp->m_TriListCount < TRILIST_CACHE_SIZE );
|
|
|
|
pTemp->m_ppTriList[pTemp->m_TriListCount] = &pNode->m_Tris[0];
|
|
pTemp->m_ppTriList[pTemp->m_TriListCount+1] = &pNode->m_Tris[1];
|
|
pTemp->m_TriListCount += 2;
|
|
}
|
|
// continue recursion
|
|
else
|
|
{
|
|
for( int i = 0; i < 4; i++ )
|
|
{
|
|
RayNodeTest_r( pTemp, GetChildNode( nodeIndex, i ), rayStart, rayEnd );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
bool CDispCollTree::RayTestAllTris( CDispCollData *pData, int power )
|
|
{
|
|
//
|
|
// get leaf indices
|
|
//
|
|
int startIndex = CalcNodeCount( power - 1 );
|
|
int endIndex = CalcNodeCount( power );
|
|
|
|
// save incoming fraction
|
|
float startFraction = pData->m_Fraction;
|
|
float fraction = pData->m_Fraction;
|
|
|
|
Vector ray = pData->m_EndPos - pData->m_StartPos;
|
|
Vector rayDir = ray;
|
|
float rayLength = VectorNormalize(rayDir);
|
|
|
|
//
|
|
// test ray against all triangles in list
|
|
//
|
|
for( int index = startIndex; index < endIndex; index++ )
|
|
{
|
|
for( int j = 0; j < 2; j++ )
|
|
{
|
|
bool bResult = RayTriTest( pData->m_StartPos, rayDir, rayLength, &m_pNodes[index].m_Tris[j], &fraction );
|
|
if( !bResult )
|
|
continue;
|
|
|
|
if( pData->m_bOcclude )
|
|
{
|
|
return true;
|
|
}
|
|
|
|
if( fraction < pData->m_Fraction )
|
|
{
|
|
pData->m_Fraction = fraction;
|
|
pData->m_Normal = m_pNodes[index].m_Tris[j].m_Normal;
|
|
pData->m_Distance = m_pNodes[index].m_Tris[j].m_Distance;
|
|
}
|
|
}
|
|
}
|
|
|
|
// collision!
|
|
if( pData->m_Fraction < startFraction )
|
|
return true;
|
|
|
|
// no collision!
|
|
return false;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
bool CDispCollTree::RayTest( CDispCollData *pData )
|
|
{
|
|
// reset the triangle list count
|
|
CDispCollTreeTempData tmp;
|
|
tmp.m_TriListCount = 0;
|
|
|
|
// trace against nodes (copy start, end because they change)
|
|
RayNodeTest_r( &tmp, 0, pData->m_StartPos, pData->m_EndPos );
|
|
|
|
//
|
|
// trace against tris (if need be)
|
|
//
|
|
if( tmp.m_TriListCount != 0 )
|
|
{
|
|
bool result = RayTriListTest( &tmp, pData );
|
|
return result;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
bool CDispCollTree::SweptAABBTriIntersect( Vector &rayStart, Vector &rayEnd, Vector &extents,
|
|
CDispCollTri const *pTri, Vector &plNormal, float *plDist,
|
|
float *fraction )
|
|
{
|
|
|
|
//
|
|
// PUT A COPY HERE OF START AND END -- SINCE I CHANGE THEM!!!!!!
|
|
//
|
|
|
|
|
|
|
|
|
|
|
|
int dir, ptIndex;
|
|
float closeValue;
|
|
float distStart, distEnd;
|
|
float t;
|
|
Vector rayPt;
|
|
|
|
// get ray direction
|
|
Vector rayDir = rayEnd - rayStart;
|
|
|
|
// initialize fraction
|
|
*fraction = 1.0f;
|
|
|
|
//
|
|
// test for collision with axial planes (x, y, z)
|
|
//
|
|
for( dir = 0; dir < 3; dir++ )
|
|
{
|
|
if( rayDir[dir] < 0.0f )
|
|
{
|
|
closeValue = -99999.9f;
|
|
for( ptIndex = 0; ptIndex < 3; ptIndex++ )
|
|
{
|
|
if( pTri->m_Points[ptIndex][dir] > closeValue )
|
|
{
|
|
closeValue = pTri->m_Points[ptIndex][dir];
|
|
}
|
|
}
|
|
|
|
closeValue += extents[dir];
|
|
|
|
distStart = rayStart[dir] - closeValue;
|
|
distEnd = rayEnd[dir] - closeValue;
|
|
}
|
|
else
|
|
{
|
|
closeValue = 99999.9f;
|
|
for( ptIndex = 0; ptIndex < 3; ptIndex++ )
|
|
{
|
|
if( pTri->m_Points[ptIndex][dir] < closeValue )
|
|
{
|
|
closeValue = pTri->m_Points[ptIndex][dir];
|
|
}
|
|
}
|
|
|
|
closeValue -= extents[dir];
|
|
|
|
distStart = -( rayStart[dir] - closeValue );
|
|
distEnd = -( rayEnd[dir] - closeValue );
|
|
}
|
|
|
|
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
if( t > *fraction )
|
|
{
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayStart );
|
|
*fraction = t;
|
|
plNormal.Init();
|
|
plNormal[dir] = 1.0f;
|
|
*plDist = closeValue;
|
|
}
|
|
}
|
|
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayEnd );
|
|
}
|
|
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//
|
|
// check for an early out
|
|
//
|
|
if( ( pTri->m_Normal[0] > ONE_MINUS_COLLISION_EPSILON ) ||
|
|
( pTri->m_Normal[1] > ONE_MINUS_COLLISION_EPSILON ) ||
|
|
( pTri->m_Normal[2] > ONE_MINUS_COLLISION_EPSILON ) )
|
|
{
|
|
if( *fraction == 1.0f )
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// handle 9 edge tests
|
|
//
|
|
Vector normal;
|
|
Vector edge;
|
|
float dist;
|
|
|
|
// find the closest box point
|
|
Vector boxPt( 0.0f, 0.0f, 0.0f );
|
|
for( dir = 0; dir < 3; dir++ )
|
|
{
|
|
if( rayDir[dir] < 0.0f )
|
|
{
|
|
boxPt[dir] = extents[dir];
|
|
}
|
|
else
|
|
{
|
|
boxPt[dir] = -extents[dir];
|
|
}
|
|
}
|
|
|
|
//
|
|
// edge 0
|
|
//
|
|
edge = pTri->m_Points[1] - pTri->m_Points[0];
|
|
|
|
// cross x-edge
|
|
normal.x = 0.0f;
|
|
normal.y = -edge.z;
|
|
normal.z = edge.y;
|
|
|
|
// extents adjusted dist
|
|
dist = ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) );
|
|
|
|
// find distances from plane (start, end)
|
|
distStart = ( normal.y * rayStart.y ) + ( normal.z * rayStart.z ) - dist;
|
|
distEnd = ( normal.y * rayEnd.y ) + ( normal.z * rayEnd.z ) - dist;
|
|
|
|
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
if( t > *fraction )
|
|
{
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayStart );
|
|
*fraction = t;
|
|
plNormal = normal;
|
|
*plDist = dist;
|
|
}
|
|
}
|
|
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayEnd );
|
|
}
|
|
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// cross y-edge
|
|
normal.x = edge.z;
|
|
normal.y = 0.0f;
|
|
normal.z = edge.y;
|
|
|
|
// extents adjusted dist
|
|
dist = ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) );
|
|
|
|
// find distances from plane (start, end)
|
|
distStart = ( normal.x * rayStart.x ) + ( normal.z * rayStart.z ) - dist;
|
|
distEnd = ( normal.x * rayEnd.x ) + ( normal.z * rayEnd.z ) - dist;
|
|
|
|
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
if( t > *fraction )
|
|
{
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayStart );
|
|
*fraction = t;
|
|
plNormal = normal;
|
|
*plDist = dist;
|
|
}
|
|
}
|
|
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayEnd );
|
|
}
|
|
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// cross z-edge
|
|
normal.x = -edge.y;
|
|
normal.y = edge.x;
|
|
normal.z = 0.0f;
|
|
|
|
// extents adjusted dist
|
|
dist = ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) );
|
|
|
|
// find distances from plane (start, end)
|
|
distStart = ( normal.x * rayStart.x ) + ( normal.y * rayStart.y ) - dist;
|
|
distEnd = ( normal.x * rayEnd.x ) + ( normal.y * rayEnd.y ) - dist;
|
|
|
|
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
if( t > *fraction )
|
|
{
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayStart );
|
|
*fraction = t;
|
|
plNormal = normal;
|
|
*plDist = dist;
|
|
}
|
|
}
|
|
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayEnd );
|
|
}
|
|
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// edge 1
|
|
//
|
|
edge = pTri->m_Points[2] - pTri->m_Points[1];
|
|
|
|
// cross x-edge
|
|
normal.x = 0.0f;
|
|
normal.y = -edge.z;
|
|
normal.z = edge.y;
|
|
|
|
// extents adjusted dist
|
|
dist = ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) );
|
|
|
|
// find distances from plane (start, end)
|
|
distStart = ( normal.y * rayStart.y ) + ( normal.z * rayStart.z ) - dist;
|
|
distEnd = ( normal.y * rayEnd.y ) + ( normal.z * rayEnd.z ) - dist;
|
|
|
|
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
if( t > *fraction )
|
|
{
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayStart );
|
|
*fraction = t;
|
|
plNormal = normal;
|
|
*plDist = dist;
|
|
}
|
|
}
|
|
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayEnd );
|
|
}
|
|
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// cross y-edge
|
|
normal.x = edge.z;
|
|
normal.y = 0.0f;
|
|
normal.z = edge.y;
|
|
|
|
// extents adjusted dist
|
|
dist = ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) );
|
|
|
|
// find distances from plane (start, end)
|
|
distStart = ( normal.x * rayStart.x ) + ( normal.z * rayStart.z ) - dist;
|
|
distEnd = ( normal.x * rayEnd.x ) + ( normal.z * rayEnd.z ) - dist;
|
|
|
|
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
if( t > *fraction )
|
|
{
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayStart );
|
|
*fraction = t;
|
|
plNormal = normal;
|
|
*plDist = dist;
|
|
}
|
|
}
|
|
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayEnd );
|
|
}
|
|
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// cross z-edge
|
|
normal.x = -edge.y;
|
|
normal.y = edge.x;
|
|
normal.z = 0.0f;
|
|
|
|
// extents adjusted dist
|
|
dist = ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) );
|
|
|
|
// find distances from plane (start, end)
|
|
distStart = ( normal.x * rayStart.x ) + ( normal.y * rayStart.y ) - dist;
|
|
distEnd = ( normal.x * rayEnd.x ) + ( normal.y * rayEnd.y ) - dist;
|
|
|
|
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
if( t > *fraction )
|
|
{
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayStart );
|
|
*fraction = t;
|
|
plNormal = normal;
|
|
*plDist = dist;
|
|
}
|
|
}
|
|
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayEnd );
|
|
}
|
|
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// edge 2
|
|
//
|
|
edge = pTri->m_Points[0] - pTri->m_Points[2];
|
|
|
|
// cross x-edge
|
|
normal.x = 0.0f;
|
|
normal.y = -edge.z;
|
|
normal.z = edge.y;
|
|
|
|
// extents adjusted dist
|
|
dist = ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) );
|
|
|
|
// find distances from plane (start, end)
|
|
distStart = ( normal.y * rayStart.y ) + ( normal.z * rayStart.z ) - dist;
|
|
distEnd = ( normal.y * rayEnd.y ) + ( normal.z * rayEnd.z ) - dist;
|
|
|
|
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
if( t > *fraction )
|
|
{
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayStart );
|
|
*fraction = t;
|
|
plNormal = normal;
|
|
*plDist = dist;
|
|
}
|
|
}
|
|
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayEnd );
|
|
}
|
|
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// cross y-edge
|
|
normal.x = edge.z;
|
|
normal.y = 0.0f;
|
|
normal.z = edge.y;
|
|
|
|
// extents adjusted dist
|
|
dist = ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) );
|
|
|
|
// find distances from plane (start, end)
|
|
distStart = ( normal.x * rayStart.x ) + ( normal.z * rayStart.z ) - dist;
|
|
distEnd = ( normal.x * rayEnd.x ) + ( normal.z * rayEnd.z ) - dist;
|
|
|
|
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
if( t > *fraction )
|
|
{
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayStart );
|
|
*fraction = t;
|
|
plNormal = normal;
|
|
*plDist = dist;
|
|
}
|
|
}
|
|
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayEnd );
|
|
}
|
|
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// cross z-edge
|
|
normal.x = -edge.y;
|
|
normal.y = edge.x;
|
|
normal.z = 0.0f;
|
|
|
|
// extents adjusted dist
|
|
dist = ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) );
|
|
|
|
// find distances from plane (start, end)
|
|
distStart = ( normal.x * rayStart.x ) + ( normal.y * rayStart.y ) - dist;
|
|
distEnd = ( normal.x * rayEnd.x ) + ( normal.y * rayEnd.y ) - dist;
|
|
|
|
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
if( t > *fraction )
|
|
{
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayStart );
|
|
*fraction = t;
|
|
plNormal = normal;
|
|
*plDist = dist;
|
|
}
|
|
}
|
|
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayEnd );
|
|
}
|
|
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// test face plane
|
|
//
|
|
dist = ( pTri->m_Normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) +
|
|
( pTri->m_Normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) +
|
|
( pTri->m_Normal.z * ( boxPt.z - pTri->m_Points[0].z ) );
|
|
|
|
distStart = pTri->m_Normal.Dot( rayStart ) - dist;
|
|
distEnd = pTri->m_Normal.Dot( rayEnd ) - dist;
|
|
|
|
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart - COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
if( t > *fraction )
|
|
{
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayStart );
|
|
*fraction = t;
|
|
plNormal = normal;
|
|
*plDist = dist;
|
|
}
|
|
}
|
|
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
t = ( distStart + COLLISION_EPSILON ) / ( distStart - distEnd );
|
|
VectorScale( rayDir, t, rayPt );
|
|
VectorAdd( rayStart, rayPt, rayEnd );
|
|
}
|
|
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if( *fraction == 1.0f )
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
bool CDispCollTree::AABBTriIntersect( CDispCollTreeTempData *pTemp, CDispCollData *pData )
|
|
{
|
|
bool bResult = false;
|
|
|
|
Vector normal;
|
|
float fraction, dist;
|
|
|
|
//
|
|
// sweep ABB against all triangles in list
|
|
//
|
|
for( int i = 0; i < pTemp->m_TriListCount; i++ )
|
|
{
|
|
if( pTemp->m_ppTriList[i]->IsIntersect() )
|
|
{
|
|
bResult = SweptAABBTriIntersect( pData->m_StartPos, pData->m_EndPos, pData->m_Extents,
|
|
pTemp->m_ppTriList[i], normal, &dist, &fraction );
|
|
if( bResult )
|
|
{
|
|
if( fraction < pData->m_Fraction )
|
|
{
|
|
pData->m_Fraction = fraction;
|
|
pData->m_Normal = normal;
|
|
pData->m_Distance = dist;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return bResult;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
bool CDispCollTree::IntersectAABBTriTest( Vector &rayStart, Vector &extents,
|
|
CDispCollTri const *pTri )
|
|
{
|
|
int dir, ptIndex;
|
|
float dist;
|
|
|
|
//
|
|
// test axail planes (x, y, z)
|
|
//
|
|
|
|
for( dir = 0; dir < 3; dir++ )
|
|
{
|
|
//
|
|
// negative axial plane, component = dir
|
|
//
|
|
dist = rayStart[dir] - extents[dir];
|
|
for( ptIndex = 0; ptIndex < 3; ptIndex++ )
|
|
{
|
|
if( pTri->m_Points[ptIndex][dir] > dist )
|
|
break;
|
|
}
|
|
|
|
if( ptIndex == 3 )
|
|
return false;
|
|
|
|
//
|
|
// positive axial plane, component = dir
|
|
//
|
|
dist = rayStart[dir] + extents[dir];
|
|
for( ptIndex = 0; ptIndex < 3; ptIndex++ )
|
|
{
|
|
if( pTri->m_Points[ptIndex][dir] < dist )
|
|
break;
|
|
}
|
|
|
|
if( ptIndex == 3 )
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// add a test here to see if triangle face normal is close to axial -- done if so!!!
|
|
//
|
|
if( ( pTri->m_Normal[0] > ONE_MINUS_COLLISION_EPSILON ) ||
|
|
( pTri->m_Normal[1] > ONE_MINUS_COLLISION_EPSILON ) ||
|
|
( pTri->m_Normal[2] > ONE_MINUS_COLLISION_EPSILON ) )
|
|
return true;
|
|
|
|
// find the closest point on the box (use negated tri face noraml)
|
|
Vector boxPt( 0.0f, 0.0f, 0.0f );
|
|
for( dir = 0; dir < 3; dir++ )
|
|
{
|
|
if( pTri->m_Normal[dir] < 0.0f )
|
|
{
|
|
boxPt[dir] = extents[dir];
|
|
}
|
|
else
|
|
{
|
|
boxPt[dir] = -extents[dir];
|
|
}
|
|
}
|
|
|
|
//
|
|
// triangle plane test
|
|
//
|
|
// do the opposite because the ray has been negated
|
|
if( ( ( pTri->m_Normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) +
|
|
( pTri->m_Normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) +
|
|
( pTri->m_Normal.z * ( boxPt.z - pTri->m_Points[0].z ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
//
|
|
// test edge planes - 9 of them
|
|
//
|
|
Vector normal;
|
|
Vector edge;
|
|
|
|
//
|
|
// edge 0
|
|
//
|
|
edge = pTri->m_Points[1] - pTri->m_Points[0];
|
|
|
|
// cross x
|
|
normal.x = 0.0f;
|
|
normal.y = -edge.z;
|
|
normal.z = edge.y;
|
|
if( ( ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
// cross y
|
|
normal.x = edge.z;
|
|
normal.y = 0.0f;
|
|
normal.z = edge.y;
|
|
if( ( ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
// cross z
|
|
normal.x = -edge.y;
|
|
normal.y = edge.x;
|
|
normal.z = 0.0f;
|
|
if( ( ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
//
|
|
// edge 1
|
|
//
|
|
edge = pTri->m_Points[2] - pTri->m_Points[1];
|
|
|
|
// cross x
|
|
normal.x = 0.0f;
|
|
normal.y = -edge.z;
|
|
normal.z = edge.y;
|
|
if( ( ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
// cross y
|
|
normal.x = edge.z;
|
|
normal.y = 0.0f;
|
|
normal.z = edge.y;
|
|
if( ( ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
// cross z
|
|
normal.x = -edge.y;
|
|
normal.y = edge.x;
|
|
normal.z = 0.0f;
|
|
if( ( ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
//
|
|
// edge 2
|
|
//
|
|
edge = pTri->m_Points[0] - pTri->m_Points[2];
|
|
|
|
// cross x
|
|
normal.x = 0.0f;
|
|
normal.y = -edge.z;
|
|
normal.z = edge.y;
|
|
if( ( ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
// cross y
|
|
normal.x = edge.z;
|
|
normal.y = 0.0f;
|
|
normal.z = edge.y;
|
|
if( ( ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.z * ( boxPt.z - pTri->m_Points[0].z ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
// cross z
|
|
normal.x = -edge.y;
|
|
normal.y = edge.x;
|
|
normal.z = 0.0f;
|
|
if( ( ( normal.x * ( boxPt.x - pTri->m_Points[0].x ) ) + ( normal.y * ( boxPt.y - pTri->m_Points[0].y ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
bool CDispCollTree::SweptAABBTriTest( Vector &rayStart, Vector &rayEnd, Vector &extents,
|
|
CDispCollTri const *pTri )
|
|
{
|
|
// get ray direction
|
|
Vector rayDir = rayEnd - rayStart;
|
|
|
|
//
|
|
// quick and dirty test -- test to see if the object is traveling away from triangle surface???
|
|
//
|
|
if( pTri->m_Normal.Dot( rayDir ) > 0.0f )
|
|
return false;
|
|
|
|
//
|
|
// calc the swept triangle face (negate the ray -- opposite direction of box travel)
|
|
//
|
|
rayDir.Negate();
|
|
|
|
Vector points[3];
|
|
points[0] = pTri->m_Points[0] + rayDir;
|
|
points[1] = pTri->m_Points[1] + rayDir;
|
|
points[2] = pTri->m_Points[2] + rayDir;
|
|
|
|
//
|
|
// handle 4 faces tests (3 axial planes and triangle face)
|
|
//
|
|
int dir;
|
|
float dist;
|
|
|
|
//
|
|
// axial planes tests (x, y, z)
|
|
//
|
|
for( dir = 0; dir < 3; dir++ )
|
|
{
|
|
bool bOutside = true;
|
|
|
|
if( rayDir[dir] < 0.0f )
|
|
{
|
|
dist = rayStart[dir] - extents[dir];
|
|
for( int ptIndex = 0; ptIndex < 3; ptIndex )
|
|
{
|
|
if( points[ptIndex][dir] > dist )
|
|
{
|
|
bOutside = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
dist = rayStart[dir] + extents[dir];
|
|
for( int ptIndex = 0; ptIndex < 3; ptIndex )
|
|
{
|
|
if( pTri->m_Points[ptIndex][dir] < dist )
|
|
{
|
|
bOutside = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( bOutside )
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// add a test here to see if triangle face normal is close to axial -- done if so!!!
|
|
//
|
|
if( ( pTri->m_Normal[0] > ONE_MINUS_COLLISION_EPSILON ) ||
|
|
( pTri->m_Normal[1] > ONE_MINUS_COLLISION_EPSILON ) ||
|
|
( pTri->m_Normal[2] > ONE_MINUS_COLLISION_EPSILON ) )
|
|
return true;
|
|
|
|
//
|
|
// handle 9 edge tests - always use the newly swept face for this
|
|
//
|
|
Vector normal;
|
|
Vector edge;
|
|
|
|
// find the closest box point - (is written opposite to normal due to negating ray)
|
|
Vector boxPt( 0.0f, 0.0f, 0.0f );
|
|
for( dir = 0; dir < 3; dir++ )
|
|
{
|
|
if( rayDir[dir] < 0.0f )
|
|
{
|
|
boxPt[dir] = rayStart[dir] - extents[dir];
|
|
}
|
|
else
|
|
{
|
|
boxPt[dir] = rayStart[dir] + extents[dir];
|
|
}
|
|
}
|
|
|
|
//
|
|
// edge 0
|
|
//
|
|
edge = points[1] - points[0];
|
|
|
|
// cross x-edge
|
|
normal.x = 0.0f;
|
|
normal.y = -edge.z;
|
|
normal.z = edge.y;
|
|
if( ( ( normal.y * ( boxPt.y - points[0].y ) ) + ( normal.z * ( boxPt.z - points[0].z ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
// cross, y-edge
|
|
normal.x = edge.z;
|
|
normal.y = 0.0f;
|
|
normal.z = edge.y;
|
|
if( ( ( normal.x * ( boxPt.x - points[0].x ) ) + ( normal.z * ( boxPt.z - points[0].z ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
// cross z-edge
|
|
normal.x = -edge.y;
|
|
normal.y = edge.x;
|
|
normal.z = 0.0f;
|
|
if( ( ( normal.x * ( boxPt.x - points[0].x ) ) + ( normal.y * ( boxPt.y - points[0].y ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
//
|
|
// edge 1
|
|
//
|
|
edge = points[2] - points[1];
|
|
|
|
// cross x-edge
|
|
normal.x = 0.0f;
|
|
normal.y = -edge.z;
|
|
normal.z = edge.y;
|
|
if( ( ( normal.y * ( boxPt.y - points[0].y ) ) + ( normal.z * ( boxPt.z - points[0].z ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
// cross, y-edge
|
|
normal.x = edge.z;
|
|
normal.y = 0.0f;
|
|
normal.z = edge.y;
|
|
if( ( ( normal.x * ( boxPt.x - points[0].x ) ) + ( normal.z * ( boxPt.z - points[0].z ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
// cross z-edge
|
|
normal.x = -edge.y;
|
|
normal.y = edge.x;
|
|
normal.z = 0.0f;
|
|
if( ( ( normal.x * ( boxPt.x - points[0].x ) ) + ( normal.y * ( boxPt.y - points[0].y ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
//
|
|
// edge 2
|
|
//
|
|
edge = points[0] - points[2];
|
|
|
|
// cross x-edge
|
|
normal.x = 0.0f;
|
|
normal.y = -edge.z;
|
|
normal.z = edge.y;
|
|
if( ( ( normal.y * ( boxPt.y - points[0].y ) ) + ( normal.z * ( boxPt.z - points[0].z ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
// cross, y-edge
|
|
normal.x = edge.z;
|
|
normal.y = 0.0f;
|
|
normal.z = edge.y;
|
|
if( ( ( normal.x * ( boxPt.x - points[0].x ) ) + ( normal.z * ( boxPt.z - points[0].z ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
// cross z-edge
|
|
normal.x = -edge.y;
|
|
normal.y = edge.x;
|
|
normal.z = 0.0f;
|
|
if( ( ( normal.x * ( boxPt.x - points[0].x ) ) + ( normal.y * ( boxPt.y - points[0].y ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
//
|
|
// triangle plane test
|
|
//
|
|
// do the opposite because the ray has been negated
|
|
if( ( ( pTri->m_Normal.x * ( boxPt.x - points[0].x ) ) +
|
|
( pTri->m_Normal.y * ( boxPt.y - points[0].y ) ) +
|
|
( pTri->m_Normal.z * ( boxPt.z - points[0].z ) ) ) > 0.0f )
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
bool CDispCollTree::CullTriList( CDispCollTreeTempData *pTemp, Vector &rayStart, Vector &rayEnd, Vector &extents, bool bIntersect )
|
|
{
|
|
//
|
|
// intersect AABB with all triangles in list
|
|
//
|
|
if( bIntersect )
|
|
{
|
|
for( int i = 0; i < pTemp->m_TriListCount; i++ )
|
|
{
|
|
if( IntersectAABBTriTest( rayStart, extents, pTemp->m_ppTriList[i] ) )
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
//
|
|
// sweep AABB against all triangles in list
|
|
//
|
|
else
|
|
{
|
|
bool bResult = false;
|
|
|
|
for( int i = 0; i < pTemp->m_TriListCount; i++ )
|
|
{
|
|
if( SweptAABBTriTest( rayStart, rayEnd, extents, pTemp->m_ppTriList[i] ) )
|
|
{
|
|
pTemp->m_ppTriList[i]->SetIntersect( true );
|
|
bResult = true;
|
|
}
|
|
}
|
|
|
|
return bResult;
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
bool CDispCollTree::IntersectAABBAABBTest( CDispCollTreeTempData *pTemp, const Vector &pos, const Vector &extents )
|
|
{
|
|
float dist;
|
|
|
|
for( int dir = 0; dir < 3; dir++ )
|
|
{
|
|
// negative direction
|
|
dist = -( pos[dir] - ( pTemp->m_AABBDistances[(dir>>1)] - extents[dir] ) );
|
|
if( dist > COLLISION_EPSILON )
|
|
return false;
|
|
|
|
// positive direction
|
|
dist = pos[dir] - ( pTemp->m_AABBDistances[(dir>>1)+1] + extents[dir] );
|
|
if( dist > COLLISION_EPSILON )
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
bool CDispCollTree::SweptAABBAABBTest( CDispCollTreeTempData *pTemp, const Vector &rayStart, const Vector &rayEnd, const Vector &extents )
|
|
{
|
|
int dir;
|
|
float distStart, distEnd;
|
|
float fraction;
|
|
float deltas[3];
|
|
float scalers[3];
|
|
|
|
//
|
|
// enter and exit fractions
|
|
//
|
|
float enterFraction = 0.0f;
|
|
float exitFraction = 0.0f;
|
|
|
|
//
|
|
// de-normalize the paramter space so that we don't have to divide
|
|
// to find the fractional amount later (clamped for precision)
|
|
//
|
|
deltas[0] = rayEnd.x - rayStart.x;
|
|
deltas[1] = rayEnd.y - rayStart.y;
|
|
deltas[2] = rayEnd.z - rayStart.z;
|
|
if( ( deltas[0] < COLLISION_EPSILON ) && ( deltas[0] > -COLLISION_EPSILON ) ) { deltas[0] = 1.0f; }
|
|
if( ( deltas[1] < COLLISION_EPSILON ) && ( deltas[1] > -COLLISION_EPSILON ) ) { deltas[0] = 1.0f; }
|
|
if( ( deltas[2] < COLLISION_EPSILON ) && ( deltas[2] > -COLLISION_EPSILON ) ) { deltas[0] = 1.0f; }
|
|
scalers[0] = deltas[1] * deltas[2];
|
|
scalers[1] = deltas[0] * deltas[2];
|
|
scalers[2] = deltas[0] * deltas[1];
|
|
|
|
for( dir = 0; dir < 3; dir++ )
|
|
{
|
|
//
|
|
// negative direction
|
|
//
|
|
distStart = -( rayStart[dir] - ( pTemp->m_AABBDistances[(dir>>1)] - extents[dir] ) );
|
|
distEnd = -( rayEnd[dir] - ( pTemp->m_AABBDistances[(dir>>1)] - extents[dir] ) );
|
|
|
|
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
|
|
{
|
|
fraction = distStart * scalers[dir];
|
|
if( fraction > enterFraction )
|
|
{
|
|
enterFraction = fraction;
|
|
}
|
|
}
|
|
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
fraction = distStart * scalers[dir];
|
|
if( fraction < exitFraction )
|
|
{
|
|
exitFraction = fraction;
|
|
}
|
|
}
|
|
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// positive direction
|
|
//
|
|
distStart = rayStart[dir] - ( pTemp->m_AABBDistances[(dir>>1)+1] + extents[dir] );
|
|
distEnd = rayEnd[dir] - ( pTemp->m_AABBDistances[(dir>>1)+1] + extents[dir] );
|
|
|
|
if( ( distStart > COLLISION_EPSILON ) && ( distEnd < -COLLISION_EPSILON ) )
|
|
{
|
|
fraction = distStart * scalers[dir];
|
|
if( fraction > enterFraction )
|
|
{
|
|
enterFraction = fraction;
|
|
}
|
|
}
|
|
else if( ( distStart < -COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
fraction = distStart * scalers[dir];
|
|
if( fraction < exitFraction )
|
|
{
|
|
exitFraction = fraction;
|
|
}
|
|
}
|
|
else if( ( distStart > COLLISION_EPSILON ) && ( distEnd > COLLISION_EPSILON ) )
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if( exitFraction < enterFraction )
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
void CDispCollTree::BuildTriList_r( CDispCollTreeTempData *pTemp, int nodeIndex, Vector &rayStart, Vector &rayEnd, Vector &extents,
|
|
bool bIntersect )
|
|
{
|
|
//
|
|
// get the current nodes bounds and create collision test planes
|
|
// (saved in the in class cache m_AABBNormals, m_AABBDistances)
|
|
//
|
|
Vector bounds[2];
|
|
CDispCollNode *pNode = &m_pNodes[nodeIndex];
|
|
pNode->GetBounds( bounds[0], bounds[1] );
|
|
CreatePlanesFromBounds( pTemp, bounds[0], bounds[1] );
|
|
|
|
//
|
|
// interesect/sweep test
|
|
//
|
|
bool bResult;
|
|
if( bIntersect )
|
|
{
|
|
bResult = IntersectAABBAABBTest( pTemp, rayStart, extents );
|
|
}
|
|
else
|
|
{
|
|
bResult = SweptAABBAABBTest( pTemp, rayStart, rayEnd, extents );
|
|
}
|
|
|
|
if( bResult )
|
|
{
|
|
// if leaf node -- add triangles to interstection test list
|
|
if( pNode->IsLeaf() )
|
|
{
|
|
// Assert for now -- flush cache later!!!!!
|
|
Assert( pTemp->m_TriListCount >= 0 );
|
|
Assert( pTemp->m_TriListCount < TRILIST_CACHE_SIZE );
|
|
|
|
pTemp->m_ppTriList[pTemp->m_TriListCount] = &pNode->m_Tris[0];
|
|
pTemp->m_ppTriList[pTemp->m_TriListCount+1] = &pNode->m_Tris[1];
|
|
pTemp->m_TriListCount += 2;
|
|
}
|
|
// continue recursion
|
|
else
|
|
{
|
|
BuildTriList_r( pTemp, GetChildNode( nodeIndex, 0 ), rayStart, rayEnd, extents, bIntersect );
|
|
BuildTriList_r( pTemp, GetChildNode( nodeIndex, 1 ), rayStart, rayEnd, extents, bIntersect );
|
|
BuildTriList_r( pTemp, GetChildNode( nodeIndex, 2 ), rayStart, rayEnd, extents, bIntersect );
|
|
BuildTriList_r( pTemp, GetChildNode( nodeIndex, 3 ), rayStart, rayEnd, extents, bIntersect );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
bool CDispCollTree::AABBSweep( CDispCollData *pData )
|
|
{
|
|
// reset the triangle lists counts
|
|
CDispCollTreeTempData tmp;
|
|
tmp.m_TriListCount = 0;
|
|
|
|
// sweep the AABB against the tree
|
|
BuildTriList_r( &tmp, 0, pData->m_StartPos, pData->m_EndPos, pData->m_Extents, false );
|
|
|
|
// find collision triangles
|
|
if( CullTriList( &tmp, pData->m_StartPos, pData->m_EndPos, pData->m_Extents, false ) )
|
|
{
|
|
// find closest intersection
|
|
return AABBTriIntersect( &tmp, pData );
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
bool CDispCollTree::AABBIntersect( CDispCollData *pData )
|
|
{
|
|
// reset the triangle lists counts
|
|
CDispCollTreeTempData tmp;
|
|
tmp.m_TriListCount = 0;
|
|
|
|
// sweep the AABB against the tree
|
|
BuildTriList_r( &tmp, 0, pData->m_StartPos, pData->m_StartPos, pData->m_Extents, true );
|
|
|
|
// find collision triangles
|
|
return CullTriList( &tmp, pData->m_StartPos, pData->m_StartPos, pData->m_Extents, true );
|
|
}
|