165 lines
2.9 KiB
C++
165 lines
2.9 KiB
C++
//========= Copyright Valve Corporation, All rights reserved. ============//
|
|
//
|
|
// Purpose:
|
|
//
|
|
//=============================================================================//
|
|
|
|
#ifndef LERP_FUNCTIONS_H
|
|
#define LERP_FUNCTIONS_H
|
|
#ifdef _WIN32
|
|
#pragma once
|
|
#endif
|
|
|
|
|
|
template <class T>
|
|
inline T LoopingLerp( float flPercent, T flFrom, T flTo )
|
|
{
|
|
T s = flTo * flPercent + flFrom * (1.0f - flPercent);
|
|
return s;
|
|
}
|
|
|
|
template <>
|
|
inline float LoopingLerp( float flPercent, float flFrom, float flTo )
|
|
{
|
|
if ( fabs( flTo - flFrom ) >= 0.5f )
|
|
{
|
|
if (flFrom < flTo)
|
|
flFrom += 1.0f;
|
|
else
|
|
flTo += 1.0f;
|
|
}
|
|
|
|
float s = flTo * flPercent + flFrom * (1.0f - flPercent);
|
|
|
|
s = s - (int)(s);
|
|
if (s < 0.0f)
|
|
s = s + 1.0f;
|
|
|
|
return s;
|
|
}
|
|
|
|
template <class T>
|
|
inline T Lerp_Hermite( float t, const T& p0, const T& p1, const T& p2 )
|
|
{
|
|
T d1 = p1 - p0;
|
|
T d2 = p2 - p1;
|
|
|
|
T output;
|
|
float tSqr = t*t;
|
|
float tCube = t*tSqr;
|
|
|
|
output = p1 * (2*tCube-3*tSqr+1);
|
|
output += p2 * (-2*tCube+3*tSqr);
|
|
output += d1 * (tCube-2*tSqr+t);
|
|
output += d2 * (tCube-tSqr);
|
|
|
|
return output;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
inline T Derivative_Hermite( float t, const T& p0, const T& p1, const T& p2 )
|
|
{
|
|
T d1 = p1 - p0;
|
|
T d2 = p2 - p1;
|
|
|
|
T output;
|
|
float tSqr = t*t;
|
|
|
|
output = p1 * (6*tSqr - 6*t);
|
|
output += p2 * (-6*tSqr + 6*t);
|
|
output += d1 * (3*tSqr - 4*t + 1);
|
|
output += d2 * (3*tSqr - 2*t);
|
|
|
|
return output;
|
|
}
|
|
|
|
|
|
inline void Lerp_Clamp( int val )
|
|
{
|
|
}
|
|
|
|
inline void Lerp_Clamp( float val )
|
|
{
|
|
}
|
|
|
|
inline void Lerp_Clamp( const Vector &val )
|
|
{
|
|
}
|
|
|
|
inline void Lerp_Clamp( const QAngle &val )
|
|
{
|
|
}
|
|
|
|
|
|
// If we have a range checked var, then we can clamp to its limits.
|
|
template< class T, int minValue, int maxValue, int startValue >
|
|
inline void Lerp_Clamp( CRangeCheckedVar<T,minValue,maxValue,startValue> &val )
|
|
{
|
|
val.Clamp();
|
|
}
|
|
|
|
|
|
template<>
|
|
inline QAngle Lerp_Hermite<QAngle>( float t, const QAngle& p0, const QAngle& p1, const QAngle& p2 )
|
|
{
|
|
// Can't do hermite with QAngles, get discontinuities, just do a regular interpolation
|
|
return Lerp( t, p1, p2 );
|
|
}
|
|
|
|
template <class T>
|
|
inline T LoopingLerp_Hermite( float t, T p0, T p1, T p2 )
|
|
{
|
|
return Lerp_Hermite( t, p0, p1, p2 );
|
|
}
|
|
|
|
template <>
|
|
inline float LoopingLerp_Hermite( float t, float p0, float p1, float p2 )
|
|
{
|
|
if ( fabs( p1 - p0 ) > 0.5f )
|
|
{
|
|
if ( p0 < p1 )
|
|
p0 += 1.0f;
|
|
else
|
|
p1 += 1.0f;
|
|
}
|
|
|
|
if ( fabs( p2 - p1 ) > 0.5f )
|
|
{
|
|
if ( p1 < p2 )
|
|
{
|
|
p1 += 1.0f;
|
|
|
|
// see if we need to fix up p0
|
|
// important for vars that are decreasing from p0->p1->p2 where
|
|
// p1 is fixed up relative to p2, eg p0 = 0.2, p1 = 0.1, p2 = 0.9
|
|
if ( abs( p1 - p0 ) > 0.5 )
|
|
{
|
|
if ( p0 < p1 )
|
|
p0 += 1.0f;
|
|
else
|
|
p1 += 1.0f;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
p2 += 1.0f;
|
|
}
|
|
}
|
|
|
|
float s = Lerp_Hermite( t, p0, p1, p2 );
|
|
|
|
s = s - (int)(s);
|
|
if (s < 0.0f)
|
|
{
|
|
s = s + 1.0f;
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
|
|
// NOTE: C_AnimationLayer has its own versions of these functions in animationlayer.h.
|
|
|
|
|
|
#endif // LERP_FUNCTIONS_H
|