//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // //===========================================================================// #include #include "tier0/platform.h" #include "studiorendercontext.h" #include "optimize.h" #include "materialsystem/imaterialvar.h" #include "materialsystem/imesh.h" #include "materialsystem/imorph.h" #include "materialsystem/ivballoctracker.h" #include "vstdlib/random.h" #include "tier0/tslist.h" #include "tier0/platform.h" #include "tier1/refcount.h" #include "tier1/callqueue.h" #include "cmodel.h" #include "tier0/vprof.h" #include "tier1/memhelpers.h" // memdbgon must be the last include file in a .cpp file!!! #include "tier0/memdbgon.h" // garymcthack - this should go elsewhere #define MAX_NUM_BONE_INDICES 4 //----------------------------------------------------------------------------- // Toggles studio queued mode //----------------------------------------------------------------------------- void StudioChangeCallback( IConVar *var, const char *pOldValue, float flOldValue ) { // NOTE: This is necessary to flush the queued thread when this value changes MaterialLock_t hLock = g_pMaterialSystem->Lock(); g_pMaterialSystem->Unlock( hLock ); } static ConVar studio_queue_mode( "studio_queue_mode", "1", 0, "", StudioChangeCallback ); //----------------------------------------------------------------------------- // Globals //----------------------------------------------------------------------------- static float s_pZeroFlexWeights[MAXSTUDIOFLEXDESC]; //----------------------------------------------------------------------------- // Singleton instance //----------------------------------------------------------------------------- IStudioDataCache *g_pStudioDataCache = NULL; static CStudioRenderContext s_StudioRenderContext; EXPOSE_SINGLE_INTERFACE_GLOBALVAR( CStudioRenderContext, IStudioRender, STUDIO_RENDER_INTERFACE_VERSION, s_StudioRenderContext ); //----------------------------------------------------------------------------- // Constructor, destructor //----------------------------------------------------------------------------- CStudioRenderContext::CStudioRenderContext() { // Initialize render context m_RC.m_pForcedMaterial = NULL; m_RC.m_nForcedMaterialType = OVERRIDE_NORMAL; m_RC.m_ColorMod[0] = m_RC.m_ColorMod[1] = m_RC.m_ColorMod[2] = 1.0f; m_RC.m_AlphaMod = 1.0f; m_RC.m_ViewOrigin.Init(); m_RC.m_ViewRight.Init(); m_RC.m_ViewUp.Init(); m_RC.m_ViewPlaneNormal.Init(); m_RC.m_Config.m_bEnableHWMorph = true; m_RC.m_Config.m_bStatsMode = false; m_RC.m_NumLocalLights = 0; for ( int i = 0; i < 6; ++i ) { m_RC.m_LightBoxColors[i].Init( 0, 0, 0 ); } } CStudioRenderContext::~CStudioRenderContext() { } //----------------------------------------------------------------------------- // Connect, disconnect //----------------------------------------------------------------------------- bool CStudioRenderContext::Connect( CreateInterfaceFn factory ) { if ( !BaseClass::Connect( factory ) ) return false; g_pStudioDataCache = ( IStudioDataCache * )factory( STUDIO_DATA_CACHE_INTERFACE_VERSION, NULL ); if ( !g_pMaterialSystem || !g_pMaterialSystemHardwareConfig || !g_pStudioDataCache ) { Msg("StudioRender failed to connect to a required system\n" ); } return ( g_pMaterialSystem && g_pMaterialSystemHardwareConfig && g_pStudioDataCache ); } void CStudioRenderContext::Disconnect() { g_pStudioDataCache = NULL; BaseClass::Disconnect(); } //----------------------------------------------------------------------------- // Here's where systems can access other interfaces implemented by this object // Returns NULL if it doesn't implement the requested interface //----------------------------------------------------------------------------- void *CStudioRenderContext::QueryInterface( const char *pInterfaceName ) { // Loading the studiorender DLL mounts *all* interfaces CreateInterfaceFn factory = Sys_GetFactoryThis(); // This silly construction is necessary return factory( pInterfaceName, NULL ); // to prevent the LTCG compiler from crashing. } //----------------------------------------------------------------------------- // Init, shutdown //----------------------------------------------------------------------------- InitReturnVal_t CStudioRenderContext::Init() { MathLib_Init( 2.2f, 2.2f, 0.0f, 2.0f ); InitReturnVal_t nRetVal = BaseClass::Init(); if ( nRetVal != INIT_OK ) return nRetVal; if( !g_pMaterialSystem || !g_pMaterialSystemHardwareConfig ) return INIT_FAILED; return g_pStudioRenderImp->Init(); } void CStudioRenderContext::Shutdown( void ) { g_pStudioRenderImp->Shutdown(); BaseClass::Shutdown(); } //----------------------------------------------------------------------------- // Used to activate the stub material system. //----------------------------------------------------------------------------- void CStudioRenderContext::Mat_Stub( IMaterialSystem *pMatSys ) { g_pMaterialSystem = pMatSys; } //----------------------------------------------------------------------------- // Determines material flags //----------------------------------------------------------------------------- void CStudioRenderContext::ComputeMaterialFlags( studiohdr_t *phdr, studioloddata_t &lodData, IMaterial *pMaterial ) { // requesting info forces the initial material precache (and its build out) if ( pMaterial->UsesEnvCubemap() ) { phdr->flags |= STUDIOHDR_FLAGS_USES_ENV_CUBEMAP; } if ( pMaterial->NeedsPowerOfTwoFrameBufferTexture( false ) ) // The false checks if it will ever need the frame buffer, not just this frame { phdr->flags |= STUDIOHDR_FLAGS_USES_FB_TEXTURE; } // FIXME: I'd rather know that the material is definitely using the bumpmap. // It could be in the file without actually being used. static unsigned int bumpvarCache = 0; IMaterialVar *pBumpMatVar = pMaterial->FindVarFast( "$bumpmap", &bumpvarCache ); if ( pBumpMatVar && pBumpMatVar->IsDefined() && pMaterial->NeedsTangentSpace() ) { phdr->flags |= STUDIOHDR_FLAGS_USES_BUMPMAPPING; } // Make sure material is treated as bump mapped if phong is set static unsigned int phongVarCache = 0; IMaterialVar *pPhongMatVar = pMaterial->FindVarFast( "$phong", &phongVarCache ); if ( pPhongMatVar && pPhongMatVar->IsDefined() && ( pPhongMatVar->GetIntValue() != 0 ) ) { phdr->flags |= STUDIOHDR_FLAGS_USES_BUMPMAPPING; } } //----------------------------------------------------------------------------- // Does this material use a mouth shader? //----------------------------------------------------------------------------- static bool UsesMouthShader( IMaterial *pMaterial ) { // FIXME: hack, needs proper client side material system interface static unsigned int clientShaderCache = 0; IMaterialVar *clientShaderVar = pMaterial->FindVarFast( "$clientShader", &clientShaderCache ); if ( clientShaderVar ) return ( Q_stricmp( clientShaderVar->GetStringValue(), "MouthShader" ) == 0 ); return false; } //----------------------------------------------------------------------------- // Returns the actual texture name to use on the model //----------------------------------------------------------------------------- static const char *GetTextureName( studiohdr_t *phdr, OptimizedModel::FileHeader_t *pVtxHeader, int lodID, int inMaterialID ) { OptimizedModel::MaterialReplacementListHeader_t *materialReplacementList = pVtxHeader->pMaterialReplacementList( lodID ); int i; for( i = 0; i < materialReplacementList->numReplacements; i++ ) { OptimizedModel::MaterialReplacementHeader_t *materialReplacement = materialReplacementList->pMaterialReplacement( i ); if( materialReplacement->materialID == inMaterialID ) { const char *str = materialReplacement->pMaterialReplacementName(); return str; } } return phdr->pTexture( inMaterialID )->pszName(); } //----------------------------------------------------------------------------- // Loads materials associated with a particular LOD of a model //----------------------------------------------------------------------------- void CStudioRenderContext::LoadMaterials( studiohdr_t *phdr, OptimizedModel::FileHeader_t *pVtxHeader, studioloddata_t &lodData, int lodID ) { typedef IMaterial *IMaterialPtr; Assert( phdr ); lodData.numMaterials = phdr->numtextures; if ( lodData.numMaterials == 0 ) { lodData.ppMaterials = NULL; return; } lodData.ppMaterials = new IMaterialPtr[lodData.numMaterials]; Assert( lodData.ppMaterials ); lodData.pMaterialFlags = new int[lodData.numMaterials]; Assert( lodData.pMaterialFlags ); int i, j; // get index of each material // set the runtime studiohdr flags that are material derived if ( phdr->textureindex == 0 ) return; for ( i = 0; i < phdr->numtextures; i++ ) { char szPath[MAX_PATH]; IMaterial *pMaterial = NULL; // search through all specified directories until a valid material is found for ( j = 0; j < phdr->numcdtextures && IsErrorMaterial( pMaterial ); j++ ) { // If we don't do this, we get filenames like "materials\\blah.vmt". const char *textureName = GetTextureName( phdr, pVtxHeader, lodID, i ); if ( textureName[0] == CORRECT_PATH_SEPARATOR || textureName[0] == INCORRECT_PATH_SEPARATOR ) ++textureName; // This prevents filenames like /models/blah.vmt. const char *pCdTexture = phdr->pCdtexture( j ); if ( pCdTexture[0] == CORRECT_PATH_SEPARATOR || pCdTexture[0] == INCORRECT_PATH_SEPARATOR ) ++pCdTexture; V_ComposeFileName( pCdTexture, textureName, szPath, sizeof( szPath ) ); if ( phdr->flags & STUDIOHDR_FLAGS_OBSOLETE ) { pMaterial = g_pMaterialSystem->FindMaterial( "models/obsolete/obsolete", TEXTURE_GROUP_MODEL, false ); if ( IsErrorMaterial( pMaterial ) ) { Warning( "StudioRender: OBSOLETE material missing: \"models/obsolete/obsolete\"\n" ); } } else { pMaterial = g_pMaterialSystem->FindMaterial( szPath, TEXTURE_GROUP_MODEL, false ); } } if ( IsErrorMaterial( pMaterial ) ) { // hack - if it isn't found, go through the motions of looking for it again // so that the materialsystem will give an error. char szPrefix[256]; Q_strncpy( szPrefix, phdr->pszName(), sizeof( szPrefix ) ); Q_strncat( szPrefix, " : ", sizeof( szPrefix ), COPY_ALL_CHARACTERS ); for ( j = 0; j < phdr->numcdtextures; j++ ) { Q_strncpy( szPath, phdr->pCdtexture( j ), sizeof( szPath ) ); const char *textureName = GetTextureName( phdr, pVtxHeader, lodID, i ); Q_strncat( szPath, textureName, sizeof( szPath ), COPY_ALL_CHARACTERS ); Q_FixSlashes( szPath, CORRECT_PATH_SEPARATOR ); g_pMaterialSystem->FindMaterial( szPath, TEXTURE_GROUP_MODEL, true, szPrefix ); } } lodData.ppMaterials[i] = pMaterial; if ( pMaterial ) { // Increment the reference count for the material. pMaterial->IncrementReferenceCount(); ComputeMaterialFlags( phdr, lodData, pMaterial ); lodData.pMaterialFlags[i] = UsesMouthShader( pMaterial ) ? 1 : 0; } } } //----------------------------------------------------------------------------- // Suppresses all hw morphs on a model //----------------------------------------------------------------------------- static void SuppressAllHWMorphs( mstudiomodel_t *pModel, OptimizedModel::ModelLODHeader_t *pVtxLOD ) { for ( int k = 0; k < pModel->nummeshes; ++k ) { OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh(k); for (int i = 0; i < pVtxMesh->numStripGroups; ++i ) { OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup(i); if ( ( pStripGroup->flags & OptimizedModel::STRIPGROUP_IS_DELTA_FLEXED ) ) { pStripGroup->flags |= OptimizedModel::STRIPGROUP_SUPPRESS_HW_MORPH; } } } } //----------------------------------------------------------------------------- // Computes the total flexes on a model //----------------------------------------------------------------------------- static int ComputeTotalFlexCount( mstudiomodel_t *pModel ) { int nFlexCount = 0; for ( int k = 0; k < pModel->nummeshes; ++k ) { mstudiomesh_t* pMesh = pModel->pMesh(k); nFlexCount += pMesh->numflexes; } return nFlexCount; } //----------------------------------------------------------------------------- // Count deltas affecting a particular stripgroup //----------------------------------------------------------------------------- int CStudioRenderContext::CountDeltaFlexedStripGroups( mstudiomodel_t *pModel, OptimizedModel::ModelLODHeader_t *pVtxLOD ) { int nFlexedStripGroupCount = 0; for ( int k = 0; k < pModel->nummeshes; ++k ) { Assert( pModel->nummeshes == pVtxLOD->numMeshes ); OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh(k); for (int i = 0; i < pVtxMesh->numStripGroups; ++i ) { OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup(i); if ( ( pStripGroup->flags & OptimizedModel::STRIPGROUP_IS_DELTA_FLEXED ) == 0 ) continue; ++nFlexedStripGroupCount; } } return nFlexedStripGroupCount; } //----------------------------------------------------------------------------- // Count vertices affected by deltas in a particular strip group //----------------------------------------------------------------------------- int CStudioRenderContext::CountFlexedVertices( mstudiomesh_t* pMesh, OptimizedModel::StripGroupHeader_t* pStripGroup ) { if ( !pMesh->numflexes ) return 0; // an inverse mapping from mesh index to strip group index unsigned short *pMeshIndexToGroupIndex = (unsigned short*)_alloca( pMesh->pModel()->numvertices * sizeof(unsigned short) ); memset( pMeshIndexToGroupIndex, 0xFF, pMesh->pModel()->numvertices * sizeof(unsigned short) ); for ( int i = 0; i < pStripGroup->numVerts; ++i ) { int nMeshVert = pStripGroup->pVertex(i)->origMeshVertID; pMeshIndexToGroupIndex[ nMeshVert ] = (unsigned short)i; } int nFlexVertCount = 0; for ( int i = 0; i < pMesh->numflexes; ++i ) { mstudioflex_t *pFlex = pMesh->pFlex( i ); byte *pVAnim = pFlex->pBaseVertanim(); int nVAnimSizeBytes = pFlex->VertAnimSizeBytes(); for ( int j = 0; j < pFlex->numverts; ++j ) { mstudiovertanim_t *pAnim = (mstudiovertanim_t*)( pVAnim + j * nVAnimSizeBytes ); int nMeshVert = pAnim->index; unsigned short nGroupVert = pMeshIndexToGroupIndex[nMeshVert]; // In this case, this vertex is not part of this meshgroup. Ignore it. if ( nGroupVert != 0xFFFF ) { // Only count it once pMeshIndexToGroupIndex[nMeshVert] = 0xFFFF; ++nFlexVertCount; } } } return nFlexVertCount; } //----------------------------------------------------------------------------- // Determine if any strip groups shouldn't be morphed //----------------------------------------------------------------------------- static int* s_pVertexCount; static int SortVertCount( const void *arg1, const void *arg2 ) { /* Compare all of both strings: */ return s_pVertexCount[*( const int* )arg2] - s_pVertexCount[*( const int* )arg1]; } #define MIN_HWMORPH_FLEX_COUNT 200 void CStudioRenderContext::DetermineHWMorphing( mstudiomodel_t *pModel, OptimizedModel::ModelLODHeader_t *pVtxLOD ) { if ( !g_pMaterialSystemHardwareConfig->HasFastVertexTextures() ) return; // There is fixed cost to using HW morphing in the form of setting rendertargets. // Therefore if there is a low chance of there being enough work, then do it in software. int nTotalFlexCount = ComputeTotalFlexCount( pModel ); if ( nTotalFlexCount == 0 ) return; if ( nTotalFlexCount < MIN_HWMORPH_FLEX_COUNT ) { SuppressAllHWMorphs( pModel, pVtxLOD ); return; } // If we have less meshes than the most morphs we can do in a batch, we're done. int nMaxHWMorphBatchCount = g_pMaterialSystemHardwareConfig->MaxHWMorphBatchCount(); bool bHWMorph = ( pModel->nummeshes <= nMaxHWMorphBatchCount ); if ( bHWMorph ) return; // If we have less flexed strip groups than the most we can do in a batch, we're done. int nFlexedStripGroup = CountDeltaFlexedStripGroups( pModel, pVtxLOD ); if ( nFlexedStripGroup <= nMaxHWMorphBatchCount ) return; // Finally, the expensive method. Do HW morphing on the N most expensive strip groups // FIXME: We should do this at studiomdl time? // Certainly counting the # of flexed vertices can be done at studiomdl time. int *pVertexCount = (int*)_alloca( nFlexedStripGroup * sizeof(int) ); int nCount = 0; for ( int k = 0; k < pModel->nummeshes; ++k ) { Assert( pModel->nummeshes == pVtxLOD->numMeshes ); mstudiomesh_t* pMesh = pModel->pMesh(k); OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh(k); for (int i = 0; i < pVtxMesh->numStripGroups; ++i ) { OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup(i); if ( ( pStripGroup->flags & OptimizedModel::STRIPGROUP_IS_DELTA_FLEXED ) == 0 ) continue; pVertexCount[nCount++] = CountFlexedVertices( pMesh, pStripGroup ); } } int *pSortedVertexIndices = (int*)_alloca( nFlexedStripGroup * sizeof(int) ); for ( int i = 0; i < nFlexedStripGroup; ++i ) { pSortedVertexIndices[i] = i; } s_pVertexCount = pVertexCount; qsort( pSortedVertexIndices, nCount, sizeof(int), SortVertCount ); bool *pSuppressHWMorph = (bool*)_alloca( nFlexedStripGroup * sizeof(bool) ); memset( pSuppressHWMorph, 1, nFlexedStripGroup * sizeof(bool) ); for ( int i = 0; i < nMaxHWMorphBatchCount; ++i ) { pSuppressHWMorph[pSortedVertexIndices[i]] = false; } // Bleah. Pretty lame. We should change StripGroupHeader_t to store the flex vertex count int nIndex = 0; for ( int k = 0; k < pModel->nummeshes; ++k ) { Assert( pModel->nummeshes == pVtxLOD->numMeshes ); OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh(k); for (int i = 0; i < pVtxMesh->numStripGroups; ++i ) { OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup(i); if ( ( pStripGroup->flags & OptimizedModel::STRIPGROUP_IS_DELTA_FLEXED ) == 0 ) continue; if ( pSuppressHWMorph[nIndex] ) { pStripGroup->flags |= OptimizedModel::STRIPGROUP_SUPPRESS_HW_MORPH; } ++nIndex; } } } //----------------------------------------------------------------------------- // Adds a vertex to the meshbuilder. Returns false if boneweights did not sum to 1.0 //----------------------------------------------------------------------------- template bool CStudioRenderContext::R_AddVertexToMesh( const char *pModelName, bool bNeedsTangentSpace, CMeshBuilder& meshBuilder, OptimizedModel::Vertex_t* pVertex, mstudiomesh_t* pMesh, const mstudio_meshvertexdata_t *vertData, bool hwSkin ) { bool bOK = true; int idx = pVertex->origMeshVertID; mstudiovertex_t &vert = *vertData->Vertex( idx ); // FIXME: if this ever becomes perf-critical... these writes are not in memory-ascending order, // which hurts since VBs are in write-combined memory (See WriteCombineOrdering_t) meshBuilder.Position3fv( vert.m_vecPosition.Base() ); meshBuilder.CompressedNormal3fv( vert.m_vecNormal.Base() ); /* if( vert.m_vecNormal.Length() < .9f || vert.m_vecNormal.Length() > 1.1f ) { static CUtlStringMap errorMessages; if( !errorMessages.Defined( pModelName ) ) { errorMessages[pModelName] = true; Warning( "MODELBUG %s: bad normal\n", pModelName ); Warning( "\tnormal %0.1f %0.1f %0.1f pos: %0.1f %0.1f %0.1f\n", vert.m_vecNormal.x, vert.m_vecNormal.y, vert.m_vecNormal.z, vert.m_vecPosition.x, vert.m_vecPosition.y, vert.m_vecPosition.z ); } } */ meshBuilder.TexCoord2fv( 0, vert.m_vecTexCoord.Base() ); if (vertData->HasTangentData()) { /* if( bNeedsTangentSpace && pModelName && vertData->TangentS( idx ) ) { const Vector4D &tangentS = *vertData->TangentS( idx ); float w = tangentS.w; if( !( w == 1.0f || w == -1.0f ) ) { static CUtlStringMap errorMessages; if( !errorMessages.Defined( pModelName ) ) { errorMessages[pModelName] = true; Warning( "MODELBUG %s: bad tangent sign\n", pModelName ); Warning( "\tsign %0.1f at position %0.1f %0.1f %0.1f\n", w, vert.m_vecPosition.x, vert.m_vecPosition.y, vert.m_vecPosition.z ); } } float len = tangentS.AsVector3D().Length(); if( len < .9f || len > 1.1f ) { static CUtlStringMap errorMessages; if( !errorMessages.Defined( pModelName ) ) { errorMessages[pModelName] = true; Warning( "MODELBUG %s: bad tangent vector\n", pModelName ); Warning( "\ttangent: %0.1f %0.1f %0.1f with length %0.1f at position %0.1f %0.1f %0.1f\n", tangentS.x, tangentS.y, tangentS.z, len, vert.m_vecPosition.x, vert.m_vecPosition.y, vert.m_vecPosition.z ); } } #if 0 float dot = DotProduct( vert.m_vecNormal, tangentS.AsVector3D() ); if( dot > .95 || dot < -.95 ) { static CUtlStringMap errorMessages; if( !errorMessages.Defined( pModelName ) ) { errorMessages[pModelName] = true; // this is crashing for some reason. .need to investigate. Warning( "MODELBUG %s: nearly colinear tangentS (%f %f %f) and normal (%f %f %f) at position %f %f %f Probably have 2 or more texcoords that are the same on a triangle.\n", pModelName, tangentS.x, tangentS.y, tangentS.y, vert.m_vecNormal.x, vert.m_vecNormal.y, vert.m_vecNormal.z, vert.m_vecPosition.x, vert.m_vecPosition.y, vert.m_vecPosition.z ); } } #endif } */ // send down tangent S as a 4D userdata vect. meshBuilder.CompressedUserData( (*vertData->TangentS( idx )).Base() ); } // Just in case we get hooked to a material that wants per-vertex color meshBuilder.Color4ub( 255, 255, 255, 255 ); float boneWeights[ MAX_NUM_BONE_INDICES ]; if ( hwSkin ) { // sum up weights.. int i; // We have to do this because since we're potentially dropping bones // to get them to fit in hardware, we'll need to renormalize based on // the actual total. mstudioboneweight_t *pBoneWeight = vertData->BoneWeights(idx); // NOTE: We use pVertex->numbones because that's the number of bones actually influencing this // vertex. Note that pVertex->numBones is not necessary the *desired* # of bones influencing this // vertex; we could have collapsed some of those bones out. pBoneWeight->numbones stures the desired # float totalWeight = 0; for (i = 0; i < pVertex->numBones; ++i) { totalWeight += pBoneWeight->weight[pVertex->boneWeightIndex[i]]; } // The only way we should not add up to 1 is if there's more than 3 *desired* bones // and more than 1 *actual* bone (we can have 0 vertex bones in the case of static props if ( (pVertex->numBones > 0) && (pBoneWeight->numbones <= 3) && fabs(totalWeight - 1.0f) > 1e-3 ) { // force them to re-normalize bOK = false; totalWeight = 1.0f; } // Fix up the static prop case if ( totalWeight == 0.0f ) { totalWeight = 1.0f; } float invTotalWeight = 1.0f / totalWeight; // It is essential to iterate over all actual bones so that the bone indices // are set correctly, even though the last bone weight is computed in a shader program for (i = 0; i < pVertex->numBones; ++i) { if ( pVertex->boneID[i] == -1 ) { boneWeights[ i ] = 0.0f; meshBuilder.BoneMatrix( i, BONE_MATRIX_INDEX_INVALID ); } else { float weight = pBoneWeight->weight[pVertex->boneWeightIndex[i]]; boneWeights[ i ] = weight * invTotalWeight; meshBuilder.BoneMatrix( i, pVertex->boneID[i] ); } } for( ; i < MAX_NUM_BONE_INDICES; i++ ) { boneWeights[ i ] = 0.0f; meshBuilder.BoneMatrix( i, BONE_MATRIX_INDEX_INVALID ); } } else { for (int i = 0; i < MAX_NUM_BONE_INDICES; ++i) { boneWeights[ i ] = (i == 0) ? 1.0f : 0.0f; meshBuilder.BoneMatrix( i, BONE_MATRIX_INDEX_INVALID ); } } // Set all the weights at once (the meshbuilder performs additional, post-compression, normalization): Assert( pVertex->numBones <= 3 ); if ( pVertex->numBones > 0 ) { meshBuilder.CompressedBoneWeight3fv( &( boneWeights[ 0 ] ) ); } meshBuilder.AdvanceVertex(); return bOK; } // Get (uncompressed) vertex data from a mesh, if available inline const mstudio_meshvertexdata_t * GetFatVertexData( mstudiomesh_t * pMesh, studiohdr_t * pStudioHdr ) { if ( !pMesh->pModel()->CacheVertexData( pStudioHdr ) ) { // not available yet return NULL; } const mstudio_meshvertexdata_t *pVertData = pMesh->GetVertexData( pStudioHdr ); Assert( pVertData ); if ( !pVertData ) { static unsigned int warnCount = 0; if ( warnCount++ < 20 ) Warning( "ERROR: model verts have been compressed, cannot render! (use \"-no_compressed_vvds\")" ); } return pVertData; } //----------------------------------------------------------------------------- // Builds the group //----------------------------------------------------------------------------- void CStudioRenderContext::R_StudioBuildMeshGroup( const char *pModelName, bool bNeedsTangentSpace, studiomeshgroup_t* pMeshGroup, OptimizedModel::StripGroupHeader_t *pStripGroup, mstudiomesh_t* pMesh, studiohdr_t *pStudioHdr, VertexFormat_t vertexFormat ) { CMatRenderContextPtr pRenderContext( g_pMaterialSystem ); // We have to do this here because of skinning; there may be any number of // materials that are applied to this mesh. // Copy over all the vertices + indices in this strip group pMeshGroup->m_pMesh = pRenderContext->CreateStaticMesh( vertexFormat, TEXTURE_GROUP_STATIC_VERTEX_BUFFER_MODELS ); VertexCompressionType_t compressionType = CompressionType( vertexFormat ); pMeshGroup->m_ColorMeshID = -1; bool hwSkin = (pMeshGroup->m_Flags & MESHGROUP_IS_HWSKINNED) != 0; // This mesh could have tristrips or trilists in it CMeshBuilder meshBuilder; meshBuilder.SetCompressionType( compressionType ); meshBuilder.Begin( pMeshGroup->m_pMesh, MATERIAL_HETEROGENOUS, hwSkin ? pStripGroup->numVerts : 0, pStripGroup->numIndices ); int i; bool bBadBoneWeights = false; if ( hwSkin ) { const mstudio_meshvertexdata_t *vertData = GetFatVertexData( pMesh, pStudioHdr ); Assert( vertData ); for ( i = 0; i < pStripGroup->numVerts; ++i ) { bool success; switch ( compressionType ) { case VERTEX_COMPRESSION_ON: success = R_AddVertexToMesh( pModelName, bNeedsTangentSpace, meshBuilder, pStripGroup->pVertex(i), pMesh, vertData, hwSkin ); break; case VERTEX_COMPRESSION_NONE: default: success = R_AddVertexToMesh( pModelName, bNeedsTangentSpace, meshBuilder, pStripGroup->pVertex(i), pMesh, vertData, hwSkin ); break; } if ( !success ) { bBadBoneWeights = true; } } } if ( bBadBoneWeights ) { mstudiomodel_t* pModel = pMesh->pModel(); ConMsg( "Bad data found in model \"%s\" (bad bone weights)\n", pModel->pszName() ); } for (i = 0; i < pStripGroup->numIndices; ++i) { unsigned short index; memcpy( &index, pStripGroup->pIndex(i), sizeof(index) ); meshBuilder.Index( index ); meshBuilder.AdvanceIndex(); } meshBuilder.End(); // Copy over the strip indices. We need access to the indices for decals pMeshGroup->m_pIndices = new unsigned short[ pStripGroup->numIndices ]; memcpy( pMeshGroup->m_pIndices, pStripGroup->pIndex(0), pStripGroup->numIndices * sizeof(unsigned short) ); // Compute the number of non-degenerate trianges in each strip group // for statistics gathering pMeshGroup->m_pUniqueTris = new int[ pStripGroup->numStrips ]; for (i = 0; i < pStripGroup->numStrips; ++i ) { int numUnique = 0; if (pStripGroup->pStrip(i)->flags & OptimizedModel::STRIP_IS_TRISTRIP) { int last[2] = {-1, -1}; int curr = pStripGroup->pStrip(i)->indexOffset; int end = curr + pStripGroup->pStrip(i)->numIndices; while (curr != end) { int idx = *pStripGroup->pIndex(curr); if (idx != last[0] && idx != last[1] && last[0] != last[1] && last[0] != -1) ++numUnique; last[0] = last[1]; last[1] = idx; ++curr; } } else { numUnique = pStripGroup->pStrip(i)->numIndices / 3; } pMeshGroup->m_pUniqueTris[i] = numUnique; } } //----------------------------------------------------------------------------- // Builds the group //----------------------------------------------------------------------------- void CStudioRenderContext::R_StudioBuildMorph( studiohdr_t *pStudioHdr, studiomeshgroup_t* pMeshGroup, mstudiomesh_t* pMesh, OptimizedModel::StripGroupHeader_t *pStripGroup ) { if ( !g_pMaterialSystemHardwareConfig->HasFastVertexTextures() || ( ( pMeshGroup->m_Flags & MESHGROUP_IS_DELTA_FLEXED ) == 0 ) || ( ( pStripGroup->flags & OptimizedModel::STRIPGROUP_SUPPRESS_HW_MORPH ) != 0 ) ) { pMeshGroup->m_pMorph = NULL; return; } // Build an inverse mapping from mesh index to strip group index unsigned short *pMeshIndexToGroupIndex = (unsigned short*)_alloca( pMesh->pModel()->numvertices * sizeof(unsigned short) ); memset( pMeshIndexToGroupIndex, 0xFF, pMesh->pModel()->numvertices * sizeof(unsigned short) ); for ( int i = 0; i < pStripGroup->numVerts; ++i ) { int nMeshVert = pStripGroup->pVertex(i)->origMeshVertID; pMeshIndexToGroupIndex[ nMeshVert ] = (unsigned short)i; } CMatRenderContextPtr pRenderContext( g_pMaterialSystem ); MorphFormat_t morphType = MORPH_POSITION | MORPH_NORMAL | MORPH_SPEED | MORPH_SIDE; for ( int i = 0; i < pMesh->numflexes; ++i ) { if ( pMesh->pFlex( i )->vertanimtype == STUDIO_VERT_ANIM_WRINKLE ) { morphType |= MORPH_WRINKLE; break; } } char pTemp[256]; Q_snprintf( pTemp, sizeof(pTemp), "%s [%p]", pStudioHdr->pszName(), pMeshGroup ); pMeshGroup->m_pMorph = pRenderContext->CreateMorph( morphType, pTemp ); const float flVertAnimFixedPointScale = pStudioHdr->VertAnimFixedPointScale(); CMorphBuilder morphBuilder; morphBuilder.Begin( pMeshGroup->m_pMorph, 1.0f / flVertAnimFixedPointScale ); for ( int i = 0; i < pMesh->numflexes; ++i ) { mstudioflex_t *pFlex = pMesh->pFlex( i ); byte *pVAnim = pFlex->pBaseVertanim(); int nVAnimSizeBytes = pFlex->VertAnimSizeBytes(); for ( int j = 0; j < pFlex->numverts; ++j ) { mstudiovertanim_t *pAnim = (mstudiovertanim_t*)( pVAnim + j * nVAnimSizeBytes ); int nMeshVert = pAnim->index; unsigned short nGroupVert = pMeshIndexToGroupIndex[nMeshVert]; // In this case, this vertex is not part of this meshgroup. Ignore it. if ( nGroupVert == 0xFFFF ) continue; morphBuilder.PositionDelta3( pAnim->GetDeltaFixed( flVertAnimFixedPointScale ) ); morphBuilder.NormalDelta3( pAnim->GetNDeltaFixed( flVertAnimFixedPointScale ) ); morphBuilder.Speed1f( pAnim->speed / 255.0f ); morphBuilder.Side1f( pAnim->side / 255.0f ); if ( pFlex->vertanimtype == STUDIO_VERT_ANIM_WRINKLE ) { mstudiovertanim_wrinkle_t *pWrinkleAnim = static_cast( pAnim ); morphBuilder.WrinkleDelta1f( pWrinkleAnim->GetWrinkleDeltaFixed( flVertAnimFixedPointScale ) ); } else { morphBuilder.WrinkleDelta1f( 0.0f ); } morphBuilder.AdvanceMorph( nGroupVert, i ); } } morphBuilder.End(); } //----------------------------------------------------------------------------- // Builds the strip data //----------------------------------------------------------------------------- void CStudioRenderContext::R_StudioBuildMeshStrips( studiomeshgroup_t* pMeshGroup, OptimizedModel::StripGroupHeader_t *pStripGroup ) { // FIXME: This is bogus // Compute the amount of memory we need to store the strip data int i; int stripDataSize = 0; for( i = 0; i < pStripGroup->numStrips; ++i ) { stripDataSize += sizeof(OptimizedModel::StripHeader_t); stripDataSize += pStripGroup->pStrip(i)->numBoneStateChanges * sizeof(OptimizedModel::BoneStateChangeHeader_t); } pMeshGroup->m_pStripData = (OptimizedModel::StripHeader_t*)malloc(stripDataSize); // Copy over the strip info int boneStateChangeOffset = pStripGroup->numStrips * sizeof(OptimizedModel::StripHeader_t); for( i = 0; i < pStripGroup->numStrips; ++i ) { memcpy( &pMeshGroup->m_pStripData[i], pStripGroup->pStrip(i), sizeof( OptimizedModel::StripHeader_t ) ); // Fixup the bone state change offset, since we have it right after the strip data pMeshGroup->m_pStripData[i].boneStateChangeOffset = boneStateChangeOffset - i * sizeof(OptimizedModel::StripHeader_t); // copy over bone state changes int boneWeightSize = pMeshGroup->m_pStripData[i].numBoneStateChanges * sizeof(OptimizedModel::BoneStateChangeHeader_t); if (boneWeightSize != 0) { unsigned char* pBoneStateChange = (unsigned char*)pMeshGroup->m_pStripData + boneStateChangeOffset; memcpy( pBoneStateChange, pStripGroup->pStrip(i)->pBoneStateChange(0), boneWeightSize); boneStateChangeOffset += boneWeightSize; } } pMeshGroup->m_NumStrips = pStripGroup->numStrips; } //----------------------------------------------------------------------------- // Determine the max. number of bone weights used by a stripgroup //----------------------------------------------------------------------------- int CStudioRenderContext::GetNumBoneWeights( const OptimizedModel::StripGroupHeader_t *pGroup ) { int nBoneWeightsMax = 0; for (int i = 0;i < pGroup->numStrips; i++) { OptimizedModel::StripHeader_t * pStrip = pGroup->pStrip( i ); nBoneWeightsMax = max( nBoneWeightsMax, (int)pStrip->numBones ); } return nBoneWeightsMax; } //----------------------------------------------------------------------------- // Determine an actual model vertex format for a mesh based on its material usage. // Bypasses the homegenous model vertex format in favor of the actual format. // Ideally matches 1:1 the shader's data requirements without any bloat. //----------------------------------------------------------------------------- VertexFormat_t CStudioRenderContext::CalculateVertexFormat( const studiohdr_t *pStudioHdr, const studioloddata_t *pStudioLodData, const mstudiomesh_t* pMesh, OptimizedModel::StripGroupHeader_t *pGroup, bool bIsHwSkinned ) { bool bSkinnedMesh = ( pStudioHdr->numbones > 1 ); int nBoneWeights = GetNumBoneWeights( pGroup ); bool bIsDX7 = !g_pMaterialSystemHardwareConfig->SupportsVertexAndPixelShaders(); bool bIsDX8 = ( g_pMaterialSystemHardwareConfig->GetDXSupportLevel() < 90 ); if ( bIsDX7 ) { // FIXME: this is untested (as of June '07, the engine currently doesn't work with "-dxlevel 70") if ( bSkinnedMesh ) return MATERIAL_VERTEX_FORMAT_MODEL_SKINNED_DX7; else return MATERIAL_VERTEX_FORMAT_MODEL_DX7; } else if ( bIsDX8 ) { if ( bSkinnedMesh ) return MATERIAL_VERTEX_FORMAT_MODEL_SKINNED; else return MATERIAL_VERTEX_FORMAT_MODEL; } else { // DX9+ path (supports vertex compression) // iterate each skin table // determine aggregate vertex format for specified mesh's material VertexFormat_t newVertexFormat = 0; //bool bBumpmapping = false; short *pSkinref = pStudioHdr->pSkinref( 0 ); for ( int i = 0; i < pStudioHdr->numskinfamilies; i++ ) { // FIXME: ### MATERIAL VERTEX FORMATS ARE UNRELIABLE! ### // // IMaterial* pMaterial = pStudioLodData->ppMaterials[ pSkinref[ pMesh->material ] ]; // Assert( pMaterial ); // VertexFormat_t vertexFormat = pMaterial->GetVertexFormat(); // newVertexFormat &= ~VERTEX_FORMAT_COMPRESSED; // Decide whether to compress below // // FIXME: ### MATERIAL VERTEX FORMATS ARE UNRELIABLE! ### // we need to go through all the shader CPP code and make sure that the correct vertex format // is being specified for every single shader combo! We don't have time to fix that before // shipping Ep2, but should fix it ASAP afterwards. To make catching such errors easier, we // should Assert in draw calls that the vertexdecl matches vertex shader inputs (note that D3D // debug DLLs will do that on PC, though it's not as informative as if we do it ourselves). // So, in the absence of reliable material vertex formats, use the old 'standard' elements // (we can still omit skinning data - and COLOR for DX8+, where it should come from the // second static lighting stream): VertexFormat_t vertexFormat = bIsDX7 ? MATERIAL_VERTEX_FORMAT_MODEL_DX7 : ( MATERIAL_VERTEX_FORMAT_MODEL & ~VERTEX_COLOR ); // aggregate single bit settings newVertexFormat |= vertexFormat & ( ( 1 << VERTEX_LAST_BIT ) - 1 ); int nUserDataSize = UserDataSize( vertexFormat ); if ( nUserDataSize > UserDataSize( newVertexFormat ) ) { newVertexFormat &= ~USER_DATA_SIZE_MASK; newVertexFormat |= VERTEX_USERDATA_SIZE( nUserDataSize ); } for (int j = 0; j < VERTEX_MAX_TEXTURE_COORDINATES; ++j) { int nSize = TexCoordSize( j, vertexFormat ); if ( nSize > TexCoordSize( j, newVertexFormat ) ) { newVertexFormat &= ~VERTEX_TEXCOORD_SIZE( j, 0x7 ); newVertexFormat |= VERTEX_TEXCOORD_SIZE( j, nSize ); } } // FIXME: re-enable this test, fix it to work and see how much memory we save (Q: why is this different to CStudioRenderContext::MeshNeedsTangentSpace ?) /*if ( !bBumpmapping && pMaterial->NeedsTangentSpace() ) { bool bFound = false; IMaterialVar *pEnvmapMatVar = pMaterial->FindVar( "$envmap", &bFound, false ); if ( bFound && pEnvmapMatVar->IsDefined() ) { IMaterialVar *pBumpMatVar = pMaterial->FindVar( "$bumpmap", &bFound, false ); if ( bFound && pBumpMatVar->IsDefined() ) { bBumpmapping = true; } } } */ pSkinref += pStudioHdr->numskinref; } // Add skinning elements for non-rigid models (with more than one bone weight) if ( bSkinnedMesh ) { if ( nBoneWeights > 0 ) { // Always exactly zero or two weights newVertexFormat |= VERTEX_BONEWEIGHT( 2 ); } newVertexFormat |= VERTEX_BONE_INDEX; } // FIXME: re-enable this (see above) /*if ( !bBumpmapping ) { // no bumpmapping, user data not needed newVertexFormat &= ~USER_DATA_SIZE_MASK; }*/ // materials on models should never have tangent space as they use userdata Assert( !(newVertexFormat & VERTEX_TANGENT_SPACE) ); // Don't compress the mesh unless it is HW-skinned (we only want to compress static // VBs, not dynamic ones - that would slow down the MeshBuilder in dynamic use cases). // Also inspect the vertex data to see if it's appropriate for the vertex element // compression techniques that we do (e.g. look at UV ranges). if ( //IsX360() && // Disabled until the craziness is banished bIsHwSkinned && ( g_pMaterialSystemHardwareConfig->SupportsCompressedVertices() == VERTEX_COMPRESSION_ON ) ) { // this mesh is appropriate for vertex compression newVertexFormat |= VERTEX_FORMAT_COMPRESSED; } return newVertexFormat; } } bool CStudioRenderContext::MeshNeedsTangentSpace( studiohdr_t *pStudioHdr, studioloddata_t *pStudioLodData, mstudiomesh_t* pMesh ) { // iterate each skin table if( !pStudioHdr || !pStudioHdr->pSkinref( 0 ) || !pStudioHdr->numskinfamilies ) { return false; } short *pSkinref = pStudioHdr->pSkinref( 0 ); for ( int i=0; inumskinfamilies; i++) { IMaterial* pMaterial = pStudioLodData->ppMaterials[pSkinref[pMesh->material]]; Assert( pMaterial ); if( !pMaterial ) { continue; } // Warning( "*****%s needstangentspace: %d\n", pMaterial->GetName(), pMaterial->NeedsTangentSpace() ? 1 : 0 ); if( pMaterial->NeedsTangentSpace() ) { return true; } } return false; } //----------------------------------------------------------------------------- // Creates a single mesh //----------------------------------------------------------------------------- void CStudioRenderContext::R_StudioCreateSingleMesh( studiohdr_t *pStudioHdr, studioloddata_t *pStudioLodData, mstudiomesh_t* pMesh, OptimizedModel::MeshHeader_t* pVtxMesh, int numBones, studiomeshdata_t* pMeshData, int *pColorMeshID ) { // Here are the cases where we don't use any meshes at all... // In the case of eyes, we're just gonna use dynamic buffers // because it's the fastest solution (prevents lots of locks) bool bNeedsTangentSpace = MeshNeedsTangentSpace( pStudioHdr, pStudioLodData, pMesh ); // Each strip group represents a locking group, it's a set of vertices // that are locked together, and, potentially, software light + skinned together pMeshData->m_NumGroup = pVtxMesh->numStripGroups; pMeshData->m_pMeshGroup = new studiomeshgroup_t[pVtxMesh->numStripGroups]; for (int i = 0; i < pVtxMesh->numStripGroups; ++i ) { OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup(i); studiomeshgroup_t* pMeshGroup = &pMeshData->m_pMeshGroup[i]; pMeshGroup->m_MeshNeedsRestore = false; // Set the flags... pMeshGroup->m_Flags = 0; if (pStripGroup->flags & OptimizedModel::STRIPGROUP_IS_FLEXED) { pMeshGroup->m_Flags |= MESHGROUP_IS_FLEXED; } if (pStripGroup->flags & OptimizedModel::STRIPGROUP_IS_DELTA_FLEXED) { pMeshGroup->m_Flags |= MESHGROUP_IS_DELTA_FLEXED; } bool bIsHwSkinned = !!(pStripGroup->flags & OptimizedModel::STRIPGROUP_IS_HWSKINNED); if ( bIsHwSkinned ) { pMeshGroup->m_Flags |= MESHGROUP_IS_HWSKINNED; } // get the minimal vertex format for this mesh VertexFormat_t vertexFormat = CalculateVertexFormat( pStudioHdr, pStudioLodData, pMesh, pStripGroup, bIsHwSkinned ); // Build the vertex + index buffers R_StudioBuildMeshGroup( pStudioHdr->pszName(), bNeedsTangentSpace, pMeshGroup, pStripGroup, pMesh, pStudioHdr, vertexFormat ); // Copy over the tristrip and triangle list data R_StudioBuildMeshStrips( pMeshGroup, pStripGroup ); // Builds morph targets R_StudioBuildMorph( pStudioHdr, pMeshGroup, pMesh, pStripGroup ); // Build the mapping from strip group vertex idx to actual mesh idx pMeshGroup->m_pGroupIndexToMeshIndex = new unsigned short[pStripGroup->numVerts + PREFETCH_VERT_COUNT]; pMeshGroup->m_NumVertices = pStripGroup->numVerts; int j; for ( j = 0; j < pStripGroup->numVerts; ++j ) { pMeshGroup->m_pGroupIndexToMeshIndex[j] = pStripGroup->pVertex(j)->origMeshVertID; } // Extra copies are for precaching... for ( j = pStripGroup->numVerts; j < pStripGroup->numVerts + PREFETCH_VERT_COUNT; ++j ) { pMeshGroup->m_pGroupIndexToMeshIndex[j] = pMeshGroup->m_pGroupIndexToMeshIndex[pStripGroup->numVerts - 1]; } // assign the possibly used color mesh id now pMeshGroup->m_ColorMeshID = (*pColorMeshID)++; } } //----------------------------------------------------------------------------- // Creates static meshes //----------------------------------------------------------------------------- void CStudioRenderContext::R_StudioCreateStaticMeshes( studiohdr_t *pStudioHdr, OptimizedModel::FileHeader_t *pVtxHdr, studiohwdata_t *pStudioHWData, int nLodID, int *pColorMeshID ) { int i, j, k; Assert( pStudioHdr && pVtxHdr && pStudioHWData ); pStudioHWData->m_pLODs[nLodID].m_pMeshData = new studiomeshdata_t[pStudioHWData->m_NumStudioMeshes]; // Iterate over every body part... for ( i = 0; i < pStudioHdr->numbodyparts; i++ ) { mstudiobodyparts_t* pBodyPart = pStudioHdr->pBodypart(i); OptimizedModel::BodyPartHeader_t* pVtxBodyPart = pVtxHdr->pBodyPart(i); // Iterate over every submodel... for ( j = 0; j < pBodyPart->nummodels; ++j ) { mstudiomodel_t* pModel = pBodyPart->pModel(j); OptimizedModel::ModelHeader_t* pVtxModel = pVtxBodyPart->pModel(j); OptimizedModel::ModelLODHeader_t *pVtxLOD = pVtxModel->pLOD( nLodID ); // Determine which meshes should be hw morphed DetermineHWMorphing( pModel, pVtxLOD ); // Support tracking of VB allocations // FIXME: categorise studiomodel allocs more precisely if ( g_VBAllocTracker ) { if ( ( pStudioHdr->numbones > 8 ) || ( pStudioHdr->numflexdesc > 0 ) ) { g_VBAllocTracker->TrackMeshAllocations( "R_StudioCreateStaticMeshes (character)" ); } else { if ( pStudioHdr->flags & STUDIOHDR_FLAGS_STATIC_PROP ) { g_VBAllocTracker->TrackMeshAllocations( "R_StudioCreateStaticMeshes (prop_static)" ); } else { g_VBAllocTracker->TrackMeshAllocations( "R_StudioCreateStaticMeshes (prop_dynamic)" ); } } } // Iterate over all the meshes.... for ( k = 0; k < pModel->nummeshes; ++k ) { Assert( pModel->nummeshes == pVtxLOD->numMeshes ); mstudiomesh_t* pMesh = pModel->pMesh(k); OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh(k); Assert( pMesh->meshid < pStudioHWData->m_NumStudioMeshes ); R_StudioCreateSingleMesh( pStudioHdr, &pStudioHWData->m_pLODs[nLodID], pMesh, pVtxMesh, pVtxHdr->maxBonesPerVert, &pStudioHWData->m_pLODs[nLodID].m_pMeshData[pMesh->meshid], pColorMeshID ); } if ( g_VBAllocTracker ) { g_VBAllocTracker->TrackMeshAllocations( NULL ); } } } } //----------------------------------------------------------------------------- // Destroys static meshes //----------------------------------------------------------------------------- void CStudioRenderContext::R_StudioDestroyStaticMeshes( int numStudioMeshes, studiomeshdata_t **ppStudioMeshes ) { if( !*ppStudioMeshes) return; CMatRenderContextPtr pRenderContext( g_pMaterialSystem ); // Iterate over every body mesh... for ( int i = 0; i < numStudioMeshes; ++i ) { studiomeshdata_t* pMesh = &((*ppStudioMeshes)[i]); for (int j = 0; j < pMesh->m_NumGroup; ++j) { studiomeshgroup_t* pGroup = &pMesh->m_pMeshGroup[j]; if (pGroup->m_pGroupIndexToMeshIndex) { delete[] pGroup->m_pGroupIndexToMeshIndex; pGroup->m_pGroupIndexToMeshIndex = 0; } if (pGroup->m_pUniqueTris) { delete [] pGroup->m_pUniqueTris; pGroup->m_pUniqueTris = 0; } if (pGroup->m_pIndices) { delete [] pGroup->m_pIndices; pGroup->m_pIndices = 0; } if (pGroup->m_pMesh) { pRenderContext->DestroyStaticMesh( pGroup->m_pMesh ); pGroup->m_pMesh = 0; } if (pGroup->m_pMorph) { pRenderContext->DestroyMorph( pGroup->m_pMorph ); pGroup->m_pMorph = 0; } if (pGroup->m_pStripData) { free( pGroup->m_pStripData ); pGroup->m_pStripData = 0; } } if (pMesh->m_pMeshGroup) { delete[] pMesh->m_pMeshGroup; pMesh->m_pMeshGroup = 0; } } if ( *ppStudioMeshes ) { delete[] *ppStudioMeshes; *ppStudioMeshes = 0; } } //----------------------------------------------------------------------------- // Builds the decal bone remap for a particular mesh //----------------------------------------------------------------------------- void CStudioRenderContext::BuildDecalBoneMap( studiohdr_t *pStudioHdr, int *pUsedBones, int *pBoneRemap, int *pMaxBoneCount, mstudiomesh_t* pMesh, OptimizedModel::StripGroupHeader_t* pStripGroup ) { const mstudio_meshvertexdata_t *pVertData = GetFatVertexData( pMesh, pStudioHdr ); Assert( pVertData ); for ( int i = 0; i < pStripGroup->numVerts; ++i ) { int nMeshVert = pStripGroup->pVertex( i )->origMeshVertID; mstudioboneweight_t &boneWeight = pVertData->Vertex( nMeshVert )->m_BoneWeights; int nBoneCount = boneWeight.numbones; for ( int j = 0; j < nBoneCount; ++j ) { if ( boneWeight.weight[j] == 0.0f ) continue; if ( pBoneRemap[ (unsigned)boneWeight.bone[j] ] >= 0 ) continue; pBoneRemap[ (unsigned)boneWeight.bone[j] ] = *pUsedBones; *pUsedBones = *pUsedBones + 1; } } for ( int i = 0; i < pStripGroup->numStrips; ++i ) { if ( pStripGroup->pStrip(i)->numBones > *pMaxBoneCount ) { *pMaxBoneCount = pStripGroup->pStrip(i)->numBones; } } } //----------------------------------------------------------------------------- // For decals on hardware morphing, we must actually do hardware skinning // because the flex must occur before skinning. // For this to work, we have to hope that the total # of bones used by // hw flexed verts is < than the max possible for the dx level we're running under //----------------------------------------------------------------------------- void CStudioRenderContext::ComputeHWMorphDecalBoneRemap( studiohdr_t *pStudioHdr, OptimizedModel::FileHeader_t *pVtxHdr, studiohwdata_t *pStudioHWData, int nLOD ) { if ( pStudioHdr->numbones == 0 ) return; // Remaps sw bones to hw bones during decal rendering // NOTE: Only bones affecting vertices which have hw flexes will be add to this map. int nBufSize = pStudioHdr->numbones * sizeof(int); int *pBoneRemap = (int*)_alloca( nBufSize ); memset( pBoneRemap, 0xFF, nBufSize ); int nMaxBoneCount = 0; // NOTE: HW bone index 0 is always the identity transform during decals. pBoneRemap[0] = 0; // necessary for unused bones in a vertex int nUsedBones = 1; studioloddata_t *pStudioLOD = &pStudioHWData->m_pLODs[nLOD]; for ( int i = 0; i < pStudioHdr->numbodyparts; ++i ) { mstudiobodyparts_t* pBodyPart = pStudioHdr->pBodypart(i); OptimizedModel::BodyPartHeader_t* pVtxBodyPart = pVtxHdr->pBodyPart(i); // Iterate over every submodel... for ( int j = 0; j < pBodyPart->nummodels; ++j ) { mstudiomodel_t* pModel = pBodyPart->pModel(j); OptimizedModel::ModelHeader_t* pVtxModel = pVtxBodyPart->pModel(j); OptimizedModel::ModelLODHeader_t *pVtxLOD = pVtxModel->pLOD( nLOD ); // Iterate over all the meshes.... for ( int k = 0; k < pModel->nummeshes; ++k ) { Assert( pModel->nummeshes == pVtxLOD->numMeshes ); mstudiomesh_t* pMesh = pModel->pMesh(k); OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh(k); studiomeshdata_t* pMeshData = &pStudioLOD->m_pMeshData[pMesh->meshid]; for ( int l = 0; l < pVtxMesh->numStripGroups; ++l ) { studiomeshgroup_t* pMeshGroup = &pMeshData->m_pMeshGroup[l]; if ( !pMeshGroup->m_pMorph ) continue; OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup(l); BuildDecalBoneMap( pStudioHdr, &nUsedBones, pBoneRemap, &nMaxBoneCount, pMesh, pStripGroup ); } } } } if ( nUsedBones > 1 ) { if ( nUsedBones > g_pMaterialSystemHardwareConfig->MaxVertexShaderBlendMatrices() ) { Warning( "Hardware morphing of decals will be busted! Too many unique bones on flexed vertices!\n" ); } pStudioLOD->m_pHWMorphDecalBoneRemap = new int[ pStudioHdr->numbones ]; memcpy( pStudioLOD->m_pHWMorphDecalBoneRemap, pBoneRemap, nBufSize ); pStudioLOD->m_nDecalBoneCount = nMaxBoneCount; } } //----------------------------------------------------------------------------- // Hook needed by mdlcache to load the vertex data //----------------------------------------------------------------------------- const vertexFileHeader_t * mstudiomodel_t::CacheVertexData( void *pModelData ) { // make requested data resident return g_pStudioDataCache->CacheVertexData( (studiohdr_t *)pModelData ); } //----------------------------------------------------------------------------- // Loads, unloads models //----------------------------------------------------------------------------- bool CStudioRenderContext::LoadModel( studiohdr_t *pStudioHdr, void *pVtxBuffer, studiohwdata_t *pStudioHWData ) { int i; int j; Assert( pStudioHdr ); Assert( pVtxBuffer ); Assert( pStudioHWData ); if ( !pStudioHdr || !pVtxBuffer || !pStudioHWData ) return false; // NOTE: This must be called *after* Mod_LoadStudioModel OptimizedModel::FileHeader_t* pVertexHdr = (OptimizedModel::FileHeader_t*)pVtxBuffer; if ( pVertexHdr->checkSum != pStudioHdr->checksum ) { ConDMsg("Error! Model %s .vtx file out of synch with .mdl\n", pStudioHdr->pszName() ); return false; } pStudioHWData->m_NumStudioMeshes = 0; for ( i = 0; i < pStudioHdr->numbodyparts; i++ ) { mstudiobodyparts_t* pBodyPart = pStudioHdr->pBodypart(i); for (j = 0; j < pBodyPart->nummodels; j++) { pStudioHWData->m_NumStudioMeshes += pBodyPart->pModel(j)->nummeshes; } } // Create static meshes Assert( pVertexHdr->numLODs ); pStudioHWData->m_RootLOD = min( (int)pStudioHdr->rootLOD, pVertexHdr->numLODs-1 ); pStudioHWData->m_NumLODs = pVertexHdr->numLODs; pStudioHWData->m_pLODs = new studioloddata_t[pVertexHdr->numLODs]; memset( pStudioHWData->m_pLODs, 0, pVertexHdr->numLODs * sizeof( studioloddata_t )); // reset the runtime flags pStudioHdr->flags &= ~STUDIOHDR_FLAGS_USES_ENV_CUBEMAP; pStudioHdr->flags &= ~STUDIOHDR_FLAGS_USES_FB_TEXTURE; pStudioHdr->flags &= ~STUDIOHDR_FLAGS_USES_BUMPMAPPING; #ifdef _DEBUG int totalNumMeshGroups = 0; #endif int nColorMeshID = 0; int nLodID; for ( nLodID = pStudioHWData->m_RootLOD; nLodID < pStudioHWData->m_NumLODs; nLodID++ ) { // Load materials and determine material dependent mesh requirements LoadMaterials( pStudioHdr, pVertexHdr, pStudioHWData->m_pLODs[nLodID], nLodID ); // build the meshes R_StudioCreateStaticMeshes( pStudioHdr, pVertexHdr, pStudioHWData, nLodID, &nColorMeshID ); // Build the hardware bone remap for decal rendering using HW morphing ComputeHWMorphDecalBoneRemap( pStudioHdr, pVertexHdr, pStudioHWData, nLodID ); // garymcthack - need to check for NULL here. // save off the lod switch point pStudioHWData->m_pLODs[nLodID].m_SwitchPoint = pVertexHdr->pBodyPart( 0 )->pModel( 0 )->pLOD( nLodID )->switchPoint; #ifdef _DEBUG studioloddata_t *pLOD = &pStudioHWData->m_pLODs[nLodID]; for ( int meshID = 0; meshID < pStudioHWData->m_NumStudioMeshes; ++meshID ) { totalNumMeshGroups += pLOD->m_pMeshData[meshID].m_NumGroup; } #endif } #ifdef _DEBUG Assert( nColorMeshID == totalNumMeshGroups ); #endif return true; } void CStudioRenderContext::UnloadModel( studiohwdata_t *pHardwareData ) { int i; for ( i = pHardwareData->m_RootLOD; i < pHardwareData->m_NumLODs; i++ ) { int j; for ( j = 0; j < pHardwareData->m_pLODs[i].numMaterials; j++ ) { if ( pHardwareData->m_pLODs[i].ppMaterials[j] ) { pHardwareData->m_pLODs[i].ppMaterials[j]->DecrementReferenceCount(); } } delete [] pHardwareData->m_pLODs[i].ppMaterials; delete [] pHardwareData->m_pLODs[i].pMaterialFlags; pHardwareData->m_pLODs[i].ppMaterials = NULL; pHardwareData->m_pLODs[i].pMaterialFlags = NULL; } for ( i = pHardwareData->m_RootLOD; i < pHardwareData->m_NumLODs; i++ ) { R_StudioDestroyStaticMeshes( pHardwareData->m_NumStudioMeshes, &pHardwareData->m_pLODs[i].m_pMeshData ); } delete[] pHardwareData->m_pLODs; pHardwareData->m_pLODs = NULL; } //----------------------------------------------------------------------------- // Refresh the studiohdr since it was lost... //----------------------------------------------------------------------------- void CStudioRenderContext::RefreshStudioHdr( studiohdr_t* pStudioHdr, studiohwdata_t* pHardwareData ) { } //----------------------------------------------------------------------------- // Set the eye view target //----------------------------------------------------------------------------- void CStudioRenderContext::SetEyeViewTarget( const studiohdr_t *pStudioHdr, int nBodyIndex, const Vector& viewtarget ) { VectorCopy( viewtarget, m_RC.m_ViewTarget ); } //----------------------------------------------------------------------------- // Returns information about the ambient light samples //----------------------------------------------------------------------------- static TableVector s_pAmbientLightDir[6] = { { 1, 0, 0 }, { -1, 0, 0 }, { 0, 1, 0 }, { 0, -1, 0 }, { 0, 0, 1 }, { 0, 0, -1 }, }; int CStudioRenderContext::GetNumAmbientLightSamples() { return 6; } const Vector *CStudioRenderContext::GetAmbientLightDirections() { return (const Vector*)s_pAmbientLightDir; } //----------------------------------------------------------------------------- // Methods related to LOD //----------------------------------------------------------------------------- int CStudioRenderContext::GetNumLODs( const studiohwdata_t &hardwareData ) const { return hardwareData.m_NumLODs; } float CStudioRenderContext::GetLODSwitchValue( const studiohwdata_t &hardwareData, int nLOD ) const { return hardwareData.m_pLODs[nLOD].m_SwitchPoint; } void CStudioRenderContext::SetLODSwitchValue( studiohwdata_t &hardwareData, int nLOD, float flSwitchValue ) { // NOTE: This must block the hardware thread since it reads this data. // This method is only used in tools, though. MaterialLock_t hLock = g_pMaterialSystem->Lock(); hardwareData.m_pLODs[nLOD].m_SwitchPoint = flSwitchValue; g_pMaterialSystem->Unlock( hLock ); } //----------------------------------------------------------------------------- // Returns the first n materials. The studiohdr material list is the superset // for all lods. //----------------------------------------------------------------------------- int CStudioRenderContext::GetMaterialList( studiohdr_t *pStudioHdr, int count, IMaterial** ppMaterials ) { AssertMsg( pStudioHdr, "Don't ignore this assert! CStudioRenderContext::GetMaterialList() has null pStudioHdr." ); if ( !pStudioHdr ) return 0; if ( pStudioHdr->textureindex == 0 ) return 0; // iterate each texture int i; int j; int found = 0; for ( i = 0; i < pStudioHdr->numtextures; i++ ) { char szPath[MAX_PATH]; IMaterial *pMaterial = NULL; // iterate quietly through all specified directories until a valid material is found for ( j = 0; j < pStudioHdr->numcdtextures && IsErrorMaterial( pMaterial ); j++ ) { // If we don't do this, we get filenames like "materials\\blah.vmt". const char *textureName = pStudioHdr->pTexture( i )->pszName(); if ( textureName[0] == CORRECT_PATH_SEPARATOR || textureName[0] == INCORRECT_PATH_SEPARATOR ) ++textureName; // This prevents filenames like /models/blah.vmt. const char *pCdTexture = pStudioHdr->pCdtexture( j ); if ( pCdTexture[0] == CORRECT_PATH_SEPARATOR || pCdTexture[0] == INCORRECT_PATH_SEPARATOR ) ++pCdTexture; V_ComposeFileName( pCdTexture, textureName, szPath, sizeof( szPath ) ); if ( pStudioHdr->flags & STUDIOHDR_FLAGS_OBSOLETE ) { pMaterial = g_pMaterialSystem->FindMaterialEx( "models/obsolete/obsolete", TEXTURE_GROUP_MODEL, MATERIAL_FINDCONTEXT_ISONAMODEL, false ); } else { pMaterial = g_pMaterialSystem->FindMaterialEx( szPath, TEXTURE_GROUP_MODEL, MATERIAL_FINDCONTEXT_ISONAMODEL, false ); } } if ( !pMaterial ) continue; if ( found < count ) { int k; for ( k=0; k= found ) { // add uniquely ppMaterials[found++] = pMaterial; } } else { break; } } return found; } int CStudioRenderContext::GetMaterialListFromBodyAndSkin( MDLHandle_t studio, int nSkin, int nBody, int nCountOutputMaterials, IMaterial** ppOutputMaterials ) { int found = 0; studiohwdata_t *pStudioHWData = g_pMDLCache->GetHardwareData( studio ); if ( pStudioHWData == NULL ) return 0; for ( int lodID = pStudioHWData->m_RootLOD; lodID < pStudioHWData->m_NumLODs; lodID++ ) { studiohdr_t *pStudioHdr = g_pMDLCache->GetStudioHdr( studio ); IMaterial **ppInputMaterials = pStudioHWData->m_pLODs[lodID].ppMaterials; if ( nSkin >= pStudioHdr->numskinfamilies ) { nSkin = 0; } short *pSkinRef = pStudioHdr->pSkinref( nSkin * pStudioHdr->numskinref ); for (int i=0 ; i < pStudioHdr->numbodyparts ; i++) { mstudiomodel_t *pModel = NULL; R_StudioSetupModel( i, nBody, &pModel, pStudioHdr ); // Iterate over all the meshes.... each mesh is a new material for( int k = 0; k < pModel->nummeshes; ++k ) { mstudiomesh_t *pMesh = pModel->pMesh(k); IMaterial *pMaterial = ppInputMaterials[pSkinRef[pMesh->material]]; Assert( pMaterial ); int m; for ( m=0; m= found ) { // add uniquely ppOutputMaterials[found++] = pMaterial; // No more room to store additional materials! if ( found >= nCountOutputMaterials ) return found; } } } } return found; } //----------------------------------------------------------------------------- // Returns perf stats about a particular model //----------------------------------------------------------------------------- void CStudioRenderContext::GetPerfStats( DrawModelResults_t *pResults, const DrawModelInfo_t &info, CUtlBuffer *pSpewBuf ) const { pResults->m_ActualTriCount = pResults->m_TextureMemoryBytes = 0; pResults->m_Materials.RemoveAll(); Assert( info.m_Lod >= 0 ); if ( info.m_Lod < 0 || !info.m_pHardwareData->m_pLODs ) return; studiomeshdata_t *pStudioMeshes = info.m_pHardwareData->m_pLODs[info.m_Lod].m_pMeshData; // Set up an array that keeps up with the number of used hardware bones in the models. CUtlVector hardwareBonesUsed; hardwareBonesUsed.EnsureCount( info.m_pStudioHdr->numbones ); int i; for( i = 0; i < info.m_pStudioHdr->numbones; i++ ) { hardwareBonesUsed[i] = false; } // Warning( "\n\n\n" ); pResults->m_NumMaterials = 0; int numBoneStateChangeBatches = 0; int numBoneStateChanges = 0; // Iterate over every submodel... IMaterial **ppMaterials = info.m_pHardwareData->m_pLODs[info.m_Lod].ppMaterials; int nSkin = info.m_Skin; if ( nSkin >= info.m_pStudioHdr->numskinfamilies ) { nSkin = 0; } short *pSkinRef = info.m_pStudioHdr->pSkinref( nSkin * info.m_pStudioHdr->numskinref ); pResults->m_NumBatches = 0; for (i=0 ; i < info.m_pStudioHdr->numbodyparts ; i++) { mstudiomodel_t *pModel = NULL; R_StudioSetupModel( i, info.m_Body, &pModel, info.m_pStudioHdr ); // Iterate over all the meshes.... each mesh is a new material int k; for( k = 0; k < pModel->nummeshes; ++k ) { mstudiomesh_t *pMesh = pModel->pMesh(k); IMaterial *pMaterial = ppMaterials[pSkinRef[pMesh->material]]; Assert( pMaterial ); studiomeshdata_t *pMeshData = &pStudioMeshes[pMesh->meshid]; if( pMeshData->m_NumGroup == 0 ) continue; Assert( pResults->m_NumMaterials == pResults->m_Materials.Count() ); pResults->m_NumMaterials++; if( pResults->m_NumMaterials < MAX_DRAW_MODEL_INFO_MATERIALS ) { pResults->m_Materials.AddToTail( pMaterial ); } else { Assert( 0 ); } if( pSpewBuf ) { pSpewBuf->Printf( " material: %s\n", pMaterial->GetName() ); } int numPasses = m_RC.m_pForcedMaterial ? m_RC.m_pForcedMaterial->GetNumPasses() : pMaterial->GetNumPasses(); if( pSpewBuf ) { pSpewBuf->Printf( " numPasses:%d\n", numPasses ); } int bytes = pMaterial->GetTextureMemoryBytes(); pResults->m_TextureMemoryBytes += bytes; if( pSpewBuf ) { pSpewBuf->Printf( " texture memory: %d (Only valid in a rendering app)\n", bytes ); } // Iterate over all stripgroups int stripGroupID; for( stripGroupID = 0; stripGroupID < pMeshData->m_NumGroup; stripGroupID++ ) { studiomeshgroup_t *pMeshGroup = &pMeshData->m_pMeshGroup[stripGroupID]; bool bIsFlexed = ( pMeshGroup->m_Flags & MESHGROUP_IS_FLEXED ) != 0; bool bIsHWSkinned = ( pMeshGroup->m_Flags & MESHGROUP_IS_HWSKINNED ) != 0; if( pSpewBuf ) { pSpewBuf->Printf( " %d batch(es):\n", ( int )pMeshGroup->m_NumStrips ); } // Iterate over all strips. . . each strip potentially changes bones states. int stripID; for( stripID = 0; stripID < pMeshGroup->m_NumStrips; stripID++ ) { pResults->m_NumBatches++; OptimizedModel::StripHeader_t *pStripData = &pMeshGroup->m_pStripData[stripID]; numBoneStateChangeBatches++; numBoneStateChanges += pStripData->numBoneStateChanges; if( bIsHWSkinned ) { // Only count bones as hardware bones if we are using hardware skinning here. int boneID; for( boneID = 0; boneID < pStripData->numBoneStateChanges; boneID++ ) { OptimizedModel::BoneStateChangeHeader_t *pBoneStateChange = pStripData->pBoneStateChange( boneID ); hardwareBonesUsed[pBoneStateChange->newBoneID] = true; } } if( pStripData->flags & OptimizedModel::STRIP_IS_TRILIST ) { // TODO: need to factor in bIsFlexed and bIsHWSkinned int numTris = pStripData->numIndices / 3; if( pSpewBuf ) { pSpewBuf->Printf( " %s%s", bIsFlexed ? "flexed " : "nonflexed ", bIsHWSkinned ? "hwskinned " : "swskinned " ); pSpewBuf->Printf( "tris: %d ", numTris ); pSpewBuf->Printf( "bone changes: %d bones/strip: %d\n", pStripData->numBoneStateChanges, ( int )pStripData->numBones ); } pResults->m_ActualTriCount += numTris * numPasses; } else if( pStripData->flags & OptimizedModel::STRIP_IS_TRISTRIP ) { Assert( 0 ); // FIXME: fill this in when we start using strips again. } else { Assert( 0 ); } } } } } if( pSpewBuf ) { char nil = '\0'; pSpewBuf->Put( &nil, 1 );; } pResults->m_NumHardwareBones = 0; for( i = 0; i < info.m_pStudioHdr->numbones; i++ ) { if( hardwareBonesUsed[i] ) { pResults->m_NumHardwareBones++; } } } //----------------------------------------------------------------------------- // Begin/end frame //----------------------------------------------------------------------------- static ConVar r_hwmorph( "r_hwmorph", "1", FCVAR_CHEAT ); void CStudioRenderContext::BeginFrame( void ) { // Cache a few values here so I don't have to in software inner loops: Assert( g_pMaterialSystemHardwareConfig ); m_RC.m_Config.m_bSupportsVertexAndPixelShaders = g_pMaterialSystemHardwareConfig->SupportsVertexAndPixelShaders(); m_RC.m_Config.m_bSupportsOverbright = g_pMaterialSystemHardwareConfig->SupportsOverbright(); m_RC.m_Config.m_bEnableHWMorph = r_hwmorph.GetInt() != 0; // Haven't implemented the hw morph with threading yet if ( g_pMaterialSystem->GetThreadMode() != MATERIAL_SINGLE_THREADED ) { m_RC.m_Config.m_bEnableHWMorph = false; } m_RC.m_Config.m_bStatsMode = false; g_pStudioRenderImp->PrecacheGlint(); } void CStudioRenderContext::EndFrame( void ) { } //----------------------------------------------------------------------------- // Methods related to config //----------------------------------------------------------------------------- void CStudioRenderContext::UpdateConfig( const StudioRenderConfig_t& config ) { memcpy( &m_RC.m_Config, &config, sizeof( StudioRenderConfig_t ) ); } void CStudioRenderContext::GetCurrentConfig( StudioRenderConfig_t& config ) { memcpy( &config, &m_RC.m_Config, sizeof( StudioRenderConfig_t ) ); } //----------------------------------------------------------------------------- // Material overrides //----------------------------------------------------------------------------- void CStudioRenderContext::ForcedMaterialOverride( IMaterial *newMaterial, OverrideType_t nOverrideType ) { m_RC.m_pForcedMaterial = newMaterial; m_RC.m_nForcedMaterialType = nOverrideType; } //----------------------------------------------------------------------------- // Return the material overrides //----------------------------------------------------------------------------- void CStudioRenderContext::GetMaterialOverride( IMaterial** ppOutForcedMaterial, OverrideType_t* pOutOverrideType ) { Assert( ppOutForcedMaterial != NULL && pOutOverrideType != NULL ); *ppOutForcedMaterial = m_RC.m_pForcedMaterial; *pOutOverrideType = m_RC.m_nForcedMaterialType; } //----------------------------------------------------------------------------- // Sets the view state //----------------------------------------------------------------------------- void CStudioRenderContext::SetViewState( const Vector& viewOrigin, const Vector& viewRight, const Vector& viewUp, const Vector& viewPlaneNormal ) { VectorCopy( viewOrigin, m_RC.m_ViewOrigin ); VectorCopy( viewRight, m_RC.m_ViewRight ); VectorCopy( viewUp, m_RC.m_ViewUp ); VectorCopy( viewPlaneNormal, m_RC.m_ViewPlaneNormal ); } //----------------------------------------------------------------------------- // Sets lighting state //----------------------------------------------------------------------------- void CStudioRenderContext::SetAmbientLightColors( const Vector *pColors ) { for( int i = 0; i < 6; i++ ) { VectorCopy( pColors[i], m_RC.m_LightBoxColors[i].AsVector3D() ); m_RC.m_LightBoxColors[i][3] = 1.0f; } // FIXME: Would like to get this into the render thread, but there's systemic confusion // about whether to set lighting state here or in the material system CMatRenderContextPtr pRenderContext( g_pMaterialSystem ); pRenderContext->SetAmbientLightCube( m_RC.m_LightBoxColors ); } void CStudioRenderContext::SetAmbientLightColors( const Vector4D *pColors ) { memutils::copy( &m_RC.m_LightBoxColors[0], pColors, 6 ); // FIXME: Would like to get this into the render thread, but there's systemic confusion // about whether to set lighting state here or in the material system CMatRenderContextPtr pRenderContext( g_pMaterialSystem ); pRenderContext->SetAmbientLightCube( m_RC.m_LightBoxColors ); } void CStudioRenderContext::SetLocalLights( int nLightCount, const LightDesc_t *pLights ) { m_RC.m_NumLocalLights = CopyLocalLightingState( MAXLOCALLIGHTS, m_RC.m_LocalLights, nLightCount, pLights ); // FIXME: Would like to get this into the render thread, but there's systemic confusion // about whether to set lighting state here or in the material system CMatRenderContextPtr pRenderContext( g_pMaterialSystem ); if ( m_RC.m_Config.bSoftwareLighting || m_RC.m_NumLocalLights == 0 ) { pRenderContext->DisableAllLocalLights(); } else { int i; int nMaxLightCount = g_pMaterialSystemHardwareConfig->MaxNumLights(); int nLightCount = min( m_RC.m_NumLocalLights, nMaxLightCount ); for( i = 0; i < nLightCount; i++ ) { pRenderContext->SetLight( i, m_RC.m_LocalLights[i] ); } for( ; i < nMaxLightCount; i++ ) { LightDesc_t desc; desc.m_Type = MATERIAL_LIGHT_DISABLE; pRenderContext->SetLight( i, desc ); } } } //----------------------------------------------------------------------------- // Sets the color modulation //----------------------------------------------------------------------------- void CStudioRenderContext::SetColorModulation( const float* pColor ) { VectorCopy( pColor, m_RC.m_ColorMod ); } void CStudioRenderContext::SetAlphaModulation( float alpha ) { m_RC.m_AlphaMod = alpha; } //----------------------------------------------------------------------------- // Used to set bone-to-world transforms. // FIXME: Should this be a lock/unlock pattern so we can't read after unlock? //----------------------------------------------------------------------------- matrix3x4_t* CStudioRenderContext::LockBoneMatrices( int nCount ) { MEM_ALLOC_CREDIT_( "CStudioRenderContext::m_BoneToWorldMatrices" ); CMatRenderContextPtr pRenderContext( g_pMaterialSystem ); CMatRenderData rdMatrix( pRenderContext ); matrix3x4_t *pDest = rdMatrix.Lock( nCount ); return pDest; } void CStudioRenderContext::UnlockBoneMatrices() { } //----------------------------------------------------------------------------- // Allocates flex weights //----------------------------------------------------------------------------- void CStudioRenderContext::LockFlexWeights( int nWeightCount, float **ppFlexWeights, float **ppFlexDelayedWeights ) { MEM_ALLOC_CREDIT_( "CStudioRenderContext::m_FlexWeights" ); CMatRenderContextPtr pRenderContext( g_pMaterialSystem ); CMatRenderData rdFlex( pRenderContext ); CMatRenderData rdFlexDelayed( pRenderContext ); float *pFlexOut = rdFlex.Lock( nWeightCount ); for ( int i = 0; i < nWeightCount; i++ ) { pFlexOut[i] = 0.0f; } *ppFlexWeights = pFlexOut; if ( ppFlexDelayedWeights ) { pFlexOut = rdFlexDelayed.Lock( nWeightCount ); for ( int i = 0; i < nWeightCount; i++ ) { pFlexOut[i] = 0.0f; } *ppFlexDelayedWeights = pFlexOut; } } void CStudioRenderContext::UnlockFlexWeights() { } //----------------------------------------------------------------------------- // Methods related to flex weights //----------------------------------------------------------------------------- static ConVar r_randomflex( "r_randomflex", "0", FCVAR_CHEAT ); //----------------------------------------------------------------------------- // This will generate random flex data that has a specified # of non-zero values //----------------------------------------------------------------------------- void CStudioRenderContext::GenerateRandomFlexWeights( int nWeightCount, float* pWeights, float *pDelayedWeights ) { int nRandomFlex = r_randomflex.GetInt(); if ( nRandomFlex <= 0 || !pWeights ) return; if ( nRandomFlex > nWeightCount ) { nRandomFlex = nWeightCount; } int *pIndices = (int*)_alloca( nWeightCount * sizeof(int) ); for ( int i = 0; i < nWeightCount; ++i ) { pIndices[i] = i; } // Shuffle for ( int i = 0; i < nWeightCount; ++i ) { int n = RandomInt( 0, nWeightCount-1 ); int nTemp = pIndices[n]; pIndices[n] = pIndices[i]; pIndices[i] = nTemp; } memset( pWeights, 0, nWeightCount * sizeof(float) ); for ( int i = 0; i < nRandomFlex; ++i ) { pWeights[ pIndices[i] ] = RandomFloat( 0.0f, 1.0f ); } if ( pDelayedWeights ) { memset( pDelayedWeights, 0, nWeightCount * sizeof(float) ); for ( int i = 0; i < nRandomFlex; ++i ) { pDelayedWeights[ pIndices[i] ] = RandomFloat( 0.0f, 1.0f ); } } } //----------------------------------------------------------------------------- // Computes LOD //----------------------------------------------------------------------------- int CStudioRenderContext::ComputeRenderLOD( IMatRenderContext *pRenderContext, const DrawModelInfo_t& info, const Vector &origin, float *pMetric ) { int lod = info.m_Lod; int lastlod = info.m_pHardwareData->m_NumLODs - 1; if ( pMetric ) { *pMetric = 0.0f; } if ( lod == USESHADOWLOD ) return lastlod; if ( lod != -1 ) return clamp( lod, info.m_pHardwareData->m_RootLOD, lastlod ); float screenSize = pRenderContext->ComputePixelWidthOfSphere( origin, 0.5f ); lod = ComputeModelLODAndMetric( info.m_pHardwareData, screenSize, pMetric ); // make sure we have a valid lod if ( info.m_pStudioHdr->flags & STUDIOHDR_FLAGS_HASSHADOWLOD ) { lastlod--; } lod = clamp( lod, info.m_pHardwareData->m_RootLOD, lastlod ); return lod; } //----------------------------------------------------------------------------- // This invokes proxies of all materials that are queued to be rendered // It has the effect of ensuring the material vars are in the correct state // since material var sets generated by the proxy bind are queued. //----------------------------------------------------------------------------- void CStudioRenderContext::InvokeBindProxies( const DrawModelInfo_t &info ) { if ( m_RC.m_pForcedMaterial ) { if ( m_RC.m_nForcedMaterialType == OVERRIDE_NORMAL && m_RC.m_pForcedMaterial->HasProxy() ) { m_RC.m_pForcedMaterial->CallBindProxy( info.m_pClientEntity ); } return; } // get skinref array int nSkin = ( m_RC.m_Config.skin > 0 ) ? m_RC.m_Config.skin : info.m_Skin; short *pSkinRef = info.m_pStudioHdr->pSkinref( 0 ); if ( nSkin > 0 && nSkin < info.m_pStudioHdr->numskinfamilies ) { pSkinRef += ( nSkin * info.m_pStudioHdr->numskinref ); } // This is used to ensure proxies are only called once int nBufSize = info.m_pStudioHdr->numtextures * sizeof(bool); bool *pProxyCalled = (bool*)stackalloc( nBufSize ); memset( pProxyCalled, 0, nBufSize ); IMaterial **ppMaterials = info.m_pHardwareData->m_pLODs[ info.m_Lod ].ppMaterials; mstudiomodel_t *pModel; for ( int i=0 ; i < info.m_pStudioHdr->numbodyparts; ++i ) { R_StudioSetupModel( i, info.m_Body, &pModel, info.m_pStudioHdr ); for ( int somethingOtherThanI = 0; somethingOtherThanI < pModel->nummeshes; ++somethingOtherThanI) { mstudiomesh_t *pMesh = pModel->pMesh(somethingOtherThanI); int nMaterialIndex = pSkinRef[ pMesh->material ]; if ( pProxyCalled[ nMaterialIndex ] ) continue; pProxyCalled[ nMaterialIndex ] = true; IMaterial* pMaterial = ppMaterials[ nMaterialIndex ]; if ( pMaterial && pMaterial->HasProxy() ) { pMaterial->CallBindProxy( info.m_pClientEntity ); } } } } //----------------------------------------------------------------------------- // Draws a model //----------------------------------------------------------------------------- void CStudioRenderContext::DrawModel( DrawModelResults_t *pResults, const DrawModelInfo_t& info, matrix3x4_t *pBoneToWorld, float *pFlexWeights, float *pFlexDelayedWeights, const Vector &origin, int flags ) { // Set to zero in case we don't render anything. if ( pResults ) { pResults->m_ActualTriCount = pResults->m_TextureMemoryBytes = 0; } if( !info.m_pStudioHdr || !info.m_pHardwareData || !info.m_pHardwareData->m_NumLODs || !info.m_pHardwareData->m_pLODs ) { return; } // Replace the flex weight data with random data for testing GenerateRandomFlexWeights( info.m_pStudioHdr->numflexdesc, pFlexWeights, pFlexDelayedWeights ); CMatRenderContextPtr pRenderContext( g_pMaterialSystem ); float flMetric; const_cast( &info )->m_Lod = ComputeRenderLOD( pRenderContext, info, origin, &flMetric ); if ( pResults ) { pResults->m_nLODUsed = info.m_Lod; pResults->m_flLODMetric = flMetric; } MaterialLock_t hLock = 0; if ( flags & STUDIORENDER_DRAW_ACCURATETIME ) { VPROF("STUDIORENDER_DRAW_ACCURATETIME"); // Flush the material system before timing this model: hLock = g_pMaterialSystem->Lock(); g_pMaterialSystem->Flush(true); } if ( pResults ) { pResults->m_RenderTime.Start(); } FlexWeights_t flex; flex.m_pFlexWeights = pFlexWeights ? pFlexWeights : s_pZeroFlexWeights; flex.m_pFlexDelayedWeights = pFlexDelayedWeights ? pFlexDelayedWeights : flex.m_pFlexWeights; ICallQueue *pCallQueue = pRenderContext->GetCallQueue(); if ( !pCallQueue || studio_queue_mode.GetInt() == 0 ) { g_pStudioRenderImp->DrawModel( info, m_RC, pBoneToWorld, flex, flags ); } else { CMatRenderData rdMatrix( pRenderContext, info.m_pStudioHdr->numbones, pBoneToWorld ); CMatRenderData rdFlex( pRenderContext ); CMatRenderData rdFlexDelayed( pRenderContext ); InvokeBindProxies( info ); pBoneToWorld = rdMatrix.Base(); if ( info.m_pStudioHdr->numflexdesc != 0 ) { rdFlex.Lock( info.m_pStudioHdr->numflexdesc, flex.m_pFlexWeights ); flex.m_pFlexWeights = rdFlex.Base(); if ( !pFlexDelayedWeights ) { flex.m_pFlexDelayedWeights = flex.m_pFlexWeights; } else { rdFlexDelayed.Lock( info.m_pStudioHdr->numflexdesc, flex.m_pFlexDelayedWeights ); flex.m_pFlexDelayedWeights = rdFlexDelayed.Base(); } } pCallQueue->QueueCall( g_pStudioRenderImp, &CStudioRender::DrawModel, info, m_RC, pBoneToWorld, flex, flags ); } if( flags & STUDIORENDER_DRAW_ACCURATETIME ) { VPROF( "STUDIORENDER_DRAW_ACCURATETIME" ); // Make sure this model is completely drawn before ending the timer: g_pMaterialSystem->Flush(true); g_pMaterialSystem->Flush(true); g_pMaterialSystem->Unlock( hLock ); } if ( pResults ) { pResults->m_RenderTime.End(); if( flags & STUDIORENDER_DRAW_GET_PERF_STATS ) { GetPerfStats( pResults, info, 0 ); } } } void CStudioRenderContext::DrawModelArray( const DrawModelInfo_t &drawInfo, int arrayCount, model_array_instance_t *pInstanceData, int instanceStride, int flags ) { // UNDONE: Support queue mode? g_pStudioRenderImp->DrawModelArray( drawInfo, m_RC, arrayCount, pInstanceData, instanceStride, flags ); } //----------------------------------------------------------------------------- // Methods related to rendering static props //----------------------------------------------------------------------------- void CStudioRenderContext::DrawModelStaticProp( const DrawModelInfo_t& info, const matrix3x4_t &modelToWorld, int flags ) { if ( info.m_Lod < info.m_pHardwareData->m_RootLOD ) { const_cast< DrawModelInfo_t* >( &info )->m_Lod = info.m_pHardwareData->m_RootLOD; } CMatRenderContextPtr pRenderContext( g_pMaterialSystem ); ICallQueue *pCallQueue = pRenderContext->GetCallQueue(); if ( !pCallQueue || studio_queue_mode.GetInt() == 0 ) { g_pStudioRenderImp->DrawModelStaticProp( info, m_RC, modelToWorld, flags ); } else { InvokeBindProxies( info ); pCallQueue->QueueCall( g_pStudioRenderImp, &CStudioRender::DrawModelStaticProp, info, m_RC, modelToWorld, flags ); } } void CStudioRenderContext::DrawStaticPropDecals( const DrawModelInfo_t &info, const matrix3x4_t &modelToWorld ) { QUEUE_STUDIORENDER_CALL( DrawStaticPropDecals, CStudioRender, g_pStudioRenderImp, info, m_RC, modelToWorld ); } void CStudioRenderContext::DrawStaticPropShadows( const DrawModelInfo_t &info, const matrix3x4_t &modelToWorld, int flags ) { QUEUE_STUDIORENDER_CALL( DrawStaticPropShadows, CStudioRender, g_pStudioRenderImp, info, m_RC, modelToWorld, flags ); } //----------------------------------------------------------------------------- // Methods related to shadows //----------------------------------------------------------------------------- void CStudioRenderContext::AddShadow( IMaterial* pMaterial, void* pProxyData, FlashlightState_t *pFlashlightState, VMatrix *pWorldToTexture, ITexture *pFlashlightDepthTexture ) { CMatRenderContextPtr pRenderContext( g_pMaterialSystem ); ICallQueue *pCallQueue = pRenderContext->GetCallQueue(); if ( !pCallQueue || studio_queue_mode.GetInt() == 0 ) { g_pStudioRenderImp->AddShadow( pMaterial, pProxyData, pFlashlightState, pWorldToTexture, pFlashlightDepthTexture ); } else { // NOTE: We don't need to make proxies work, because proxies are only ever used // when casting shadows onto props, which we don't do..that feature is disabled. // When casting flashlights onto mdls, which we *do* use, the proxy is NULL. Assert( pProxyData == NULL ); if ( pProxyData != NULL ) { Warning( "Cannot call CStudioRenderContext::AddShadows w/ proxies in queued mode!\n" ); return; } CMatRenderData< FlashlightState_t > rdFlashlight( pRenderContext, 1, pFlashlightState ); CMatRenderData< VMatrix > rdMatrix( pRenderContext, 1, pWorldToTexture ); pCallQueue->QueueCall( g_pStudioRenderImp, &CStudioRender::AddShadow, pMaterial, (void*)NULL, rdFlashlight.Base(), rdMatrix.Base(), pFlashlightDepthTexture ); } } void CStudioRenderContext::ClearAllShadows() { QUEUE_STUDIORENDER_CALL( ClearAllShadows, CStudioRender, g_pStudioRenderImp ); } //----------------------------------------------------------------------------- // Methods related to decals //----------------------------------------------------------------------------- void CStudioRenderContext::DestroyDecalList( StudioDecalHandle_t handle ) { QUEUE_STUDIORENDER_CALL( DestroyDecalList, CStudioRender, g_pStudioRenderImp, handle ); } void CStudioRenderContext::AddDecal( StudioDecalHandle_t handle, studiohdr_t *pStudioHdr, matrix3x4_t *pBoneToWorld, const Ray_t& ray, const Vector& decalUp, IMaterial* pDecalMaterial, float radius, int body, bool noPokethru, int maxLODToDecal ) { // This substition always has to be done in the main thread, so do it here. pDecalMaterial = GetModelSpecificDecalMaterial( pDecalMaterial ); CMatRenderContextPtr pRenderContext( g_pMaterialSystem ); Assert( pRenderContext->IsRenderData( pBoneToWorld ) ); QUEUE_STUDIORENDER_CALL_RC( AddDecal, CStudioRender, g_pStudioRenderImp, pRenderContext, handle, m_RC, pBoneToWorld, pStudioHdr, ray, decalUp, pDecalMaterial, radius, body, noPokethru, maxLODToDecal ); } // Function to do replacement because we always need to do this from the main thread. IMaterial* GetModelSpecificDecalMaterial( IMaterial* pDecalMaterial ) { Assert( ThreadInMainThread() ); // Since we're adding this to a studio model, check the decal to see if // there's an alternate form used for static props... bool found; IMaterialVar* pModelMaterialVar = pDecalMaterial->FindVar( "$modelmaterial", &found, false ); if ( found ) { IMaterial* pModelMaterial = g_pMaterialSystem->FindMaterial( pModelMaterialVar->GetStringValue(), TEXTURE_GROUP_DECAL, false ); if ( !IsErrorMaterial( pModelMaterial ) ) { return pModelMaterial; } } return pDecalMaterial; }