//===== Copyright (c) 1996-2005, Valve Corporation, All rights reserved. ======// // // Purpose: // // $NoKeywords: $ // // A growable memory class. //===========================================================================// #ifndef UTLMEMORY_H #define UTLMEMORY_H #ifdef _WIN32 #pragma once #endif #include "tier0/dbg.h" #include #include "tier0/platform.h" #include "tier0/memalloc.h" #include "mathlib/mathlib.h" #include "tier0/memdbgon.h" #pragma warning (disable:4100) #pragma warning (disable:4514) //----------------------------------------------------------------------------- #ifdef UTLMEMORY_TRACK #define UTLMEMORY_TRACK_ALLOC() MemAlloc_RegisterAllocation( "||Sum of all UtlMemory||", 0, m_nAllocationCount * sizeof(T), m_nAllocationCount * sizeof(T), 0 ) #define UTLMEMORY_TRACK_FREE() if ( !m_pMemory ) ; else MemAlloc_RegisterDeallocation( "||Sum of all UtlMemory||", 0, m_nAllocationCount * sizeof(T), m_nAllocationCount * sizeof(T), 0 ) #else #define UTLMEMORY_TRACK_ALLOC() ((void)0) #define UTLMEMORY_TRACK_FREE() ((void)0) #endif //----------------------------------------------------------------------------- // The CUtlMemory class: // A growable memory class which doubles in size by default. //----------------------------------------------------------------------------- template< class T, class I = int > class CUtlMemory { template< class A, class B> friend class CUtlVector; template< class A, size_t B> friend class CUtlVectorFixedGrowableCompat; public: // constructor, destructor CUtlMemory( int nGrowSize = 0, int nInitSize = 0 ); CUtlMemory( T* pMemory, int numElements ); CUtlMemory( const T* pMemory, int numElements ); ~CUtlMemory(); CUtlMemory( const CUtlMemory& ) = delete; CUtlMemory& operator=( const CUtlMemory& ) = delete; CUtlMemory( CUtlMemory&& moveFrom ); CUtlMemory& operator=( CUtlMemory&& moveFrom ); // Set the size by which the memory grows void Init( int nGrowSize = 0, int nInitSize = 0 ); class Iterator_t { public: Iterator_t( I i ) : index( i ) {} I index; bool operator==( const Iterator_t it ) const { return index == it.index; } bool operator!=( const Iterator_t it ) const { return index != it.index; } }; Iterator_t First() const { return Iterator_t( IsIdxValid( 0 ) ? 0 : InvalidIndex() ); } Iterator_t Next( const Iterator_t &it ) const { return Iterator_t( IsIdxValid( it.index + 1 ) ? it.index + 1 : InvalidIndex() ); } I GetIndex( const Iterator_t &it ) const { return it.index; } bool IsIdxAfter( I i, const Iterator_t &it ) const { return i > it.index; } bool IsValidIterator( const Iterator_t &it ) const { return IsIdxValid( it.index ); } Iterator_t InvalidIterator() const { return Iterator_t( InvalidIndex() ); } // element access T& operator[]( I i ); const T& operator[]( I i ) const; T& Element( I i ); const T& Element( I i ) const; // Can we use this index? bool IsIdxValid( I i ) const; // Specify the invalid ('null') index that we'll only return on failure static const I INVALID_INDEX = ( I )-1; // For use with COMPILE_TIME_ASSERT static I InvalidIndex() { return INVALID_INDEX; } // Gets the base address (can change when adding elements!) T* Base(); const T* Base() const; // Attaches the buffer to external memory.... void SetExternalBuffer( T* pMemory, int numElements ); void SetExternalBuffer( const T* pMemory, int numElements ); void AssumeMemory( T *pMemory, int nSize ); T* Detach(); void *DetachMemory(); // Fast swap void Swap( CUtlMemory< T, I > &mem ); // Switches the buffer from an external memory buffer to a reallocatable buffer // Will copy the current contents of the external buffer to the reallocatable buffer void ConvertToGrowableMemory( int nGrowSize ); // Size int NumAllocated() const; int Count() const; // Grows the memory, so that at least allocated + num elements are allocated void Grow( int num = 1 ); // Makes sure we've got at least this much memory void EnsureCapacity( int num ); // Memory deallocation void Purge(); // Purge all but the given number of elements void Purge( int numElements ); // is the memory externally allocated? bool IsExternallyAllocated() const; // is the memory read only? bool IsReadOnly() const; // Set the size by which the memory grows void SetGrowSize( int size ); protected: void ValidateGrowSize() { #ifdef _X360 if ( m_nGrowSize && m_nGrowSize != EXTERNAL_BUFFER_MARKER ) { // Max grow size at 128 bytes on XBOX const int MAX_GROW = 128; if ( m_nGrowSize * sizeof(T) > MAX_GROW ) { m_nGrowSize = max( 1, MAX_GROW / sizeof(T) ); } } #endif } enum { EXTERNAL_BUFFER_MARKER = -1, EXTERNAL_CONST_BUFFER_MARKER = -2, }; T* m_pMemory; int m_nAllocationCount; int m_nGrowSize; }; //----------------------------------------------------------------------------- // The CUtlMemory class: // A growable memory class which doubles in size by default. //----------------------------------------------------------------------------- template< class T, size_t SIZE, class I = int > class CUtlMemoryFixedGrowable : public CUtlMemory< T, I > { typedef CUtlMemory< T, I > BaseClass; public: CUtlMemoryFixedGrowable( int nGrowSize = 0, int nInitSize = SIZE ) : BaseClass( m_pFixedMemory, SIZE ) { Assert( nInitSize == 0 || nInitSize == SIZE ); m_nMallocGrowSize = nGrowSize; } void Grow( int nCount = 1 ) { if ( this->IsExternallyAllocated() ) { this->ConvertToGrowableMemory( m_nMallocGrowSize ); } BaseClass::Grow( nCount ); } void EnsureCapacity( int num ) { if ( CUtlMemory::m_nAllocationCount >= num ) return; if ( this->IsExternallyAllocated() ) { // Can't grow a buffer whose memory was externally allocated this->ConvertToGrowableMemory( m_nMallocGrowSize ); } BaseClass::EnsureCapacity( num ); } private: int m_nMallocGrowSize; T m_pFixedMemory[ SIZE ]; }; //----------------------------------------------------------------------------- // The CUtlMemoryFixed class: // A fixed memory class //----------------------------------------------------------------------------- template< typename T, size_t SIZE, int nAlignment = 0 > class CUtlMemoryFixed { public: // constructor, destructor CUtlMemoryFixed( int nGrowSize = 0, int nInitSize = 0 ) { Assert( nInitSize == 0 || nInitSize == SIZE ); } CUtlMemoryFixed( T* pMemory, int numElements ) { Assert( 0 ); } // Can we use this index? bool IsIdxValid( int i ) const { return (i >= 0) && (i < SIZE); } // Specify the invalid ('null') index that we'll only return on failure static const int INVALID_INDEX = -1; // For use with COMPILE_TIME_ASSERT static int InvalidIndex() { return INVALID_INDEX; } // Gets the base address T* Base() { if ( nAlignment == 0 ) return (T*)(&m_Memory[0]); else return (T*)AlignValue( &m_Memory[0], nAlignment ); } const T* Base() const { if ( nAlignment == 0 ) return (T*)(&m_Memory[0]); else return (T*)AlignValue( &m_Memory[0], nAlignment ); } // element access T& operator[]( int i ) { Assert( IsIdxValid(i) ); return Base()[i]; } const T& operator[]( int i ) const { Assert( IsIdxValid(i) ); return Base()[i]; } T& Element( int i ) { Assert( IsIdxValid(i) ); return Base()[i]; } const T& Element( int i ) const { Assert( IsIdxValid(i) ); return Base()[i]; } // Attaches the buffer to external memory.... void SetExternalBuffer( T* pMemory, int numElements ) { Assert( 0 ); } // Size int NumAllocated() const { return SIZE; } int Count() const { return SIZE; } // Grows the memory, so that at least allocated + num elements are allocated void Grow( int num = 1 ) { Assert( 0 ); } // Makes sure we've got at least this much memory void EnsureCapacity( int num ) { Assert( num <= SIZE ); } // Memory deallocation void Purge() {} // Purge all but the given number of elements (NOT IMPLEMENTED IN CUtlMemoryFixed) void Purge( int numElements ) { Assert( 0 ); } // is the memory externally allocated? bool IsExternallyAllocated() const { return false; } // Set the size by which the memory grows void SetGrowSize( int size ) {} class Iterator_t { public: Iterator_t( int i ) : index( i ) {} int index; bool operator==( const Iterator_t it ) const { return index == it.index; } bool operator!=( const Iterator_t it ) const { return index != it.index; } }; Iterator_t First() const { return Iterator_t( IsIdxValid( 0 ) ? 0 : InvalidIndex() ); } Iterator_t Next( const Iterator_t &it ) const { return Iterator_t( IsIdxValid( it.index + 1 ) ? it.index + 1 : InvalidIndex() ); } int GetIndex( const Iterator_t &it ) const { return it.index; } bool IsIdxAfter( int i, const Iterator_t &it ) const { return i > it.index; } bool IsValidIterator( const Iterator_t &it ) const { return IsIdxValid( it.index ); } Iterator_t InvalidIterator() const { return Iterator_t( InvalidIndex() ); } private: char m_Memory[ SIZE*sizeof(T) + nAlignment ]; }; // #ifdef _LINUX #define REMEMBER_ALLOC_SIZE_FOR_VALGRIND 1 // #endif //----------------------------------------------------------------------------- // The CUtlMemoryConservative class: // A dynamic memory class that tries to minimize overhead (itself small, no custom grow factor) //----------------------------------------------------------------------------- template< typename T > class CUtlMemoryConservative { public: // constructor, destructor CUtlMemoryConservative( int nGrowSize = 0, int nInitSize = 0 ) : m_pMemory( NULL ) { #ifdef REMEMBER_ALLOC_SIZE_FOR_VALGRIND m_nCurAllocSize = 0; #endif } CUtlMemoryConservative( T* pMemory, int numElements ) { Assert( 0 ); } ~CUtlMemoryConservative() { if ( m_pMemory ) free( m_pMemory ); } // Can we use this index? bool IsIdxValid( int i ) const { return ( IsDebug() ) ? ( i >= 0 && i < NumAllocated() ) : ( i >= 0 ); } static int InvalidIndex() { return -1; } // Gets the base address T* Base() { return m_pMemory; } const T* Base() const { return m_pMemory; } // element access T& operator[]( int i ) { Assert( IsIdxValid(i) ); return Base()[i]; } const T& operator[]( int i ) const { Assert( IsIdxValid(i) ); return Base()[i]; } T& Element( int i ) { Assert( IsIdxValid(i) ); return Base()[i]; } const T& Element( int i ) const { Assert( IsIdxValid(i) ); return Base()[i]; } // Attaches the buffer to external memory.... void SetExternalBuffer( T* pMemory, int numElements ) { Assert( 0 ); } // Size FORCEINLINE void RememberAllocSize( size_t sz ) { #ifdef REMEMBER_ALLOC_SIZE_FOR_VALGRIND m_nCurAllocSize = sz; #endif } size_t AllocSize( void ) const { #ifdef REMEMBER_ALLOC_SIZE_FOR_VALGRIND return m_nCurAllocSize; #else return ( m_pMemory ) ? g_pMemAlloc->GetSize( m_pMemory ) : 0; #endif } int NumAllocated() const { return AllocSize() / sizeof( T ); } int Count() const { return NumAllocated(); } FORCEINLINE void ReAlloc( size_t sz ) { m_pMemory = (T*)realloc( m_pMemory, sz ); RememberAllocSize( sz ); } // Grows the memory, so that at least allocated + num elements are allocated void Grow( int num = 1 ) { int nCurN = NumAllocated(); ReAlloc( ( nCurN + num ) * sizeof( T ) ); } // Makes sure we've got at least this much memory void EnsureCapacity( int num ) { size_t nSize = sizeof( T ) * MAX( num, Count() ); ReAlloc( nSize ); } // Memory deallocation void Purge() { free( m_pMemory ); RememberAllocSize( 0 ); m_pMemory = NULL; } // Purge all but the given number of elements void Purge( int numElements ) { ReAlloc( numElements * sizeof(T) ); } // is the memory externally allocated? bool IsExternallyAllocated() const { return false; } // Set the size by which the memory grows void SetGrowSize( int size ) {} class Iterator_t { public: Iterator_t( int i, int _limit ) : index( i ), limit( _limit ) {} int index; int limit; bool operator==( const Iterator_t it ) const { return index == it.index; } bool operator!=( const Iterator_t it ) const { return index != it.index; } }; Iterator_t First() const { int limit = NumAllocated(); return Iterator_t( limit ? 0 : InvalidIndex(), limit ); } Iterator_t Next( const Iterator_t &it ) const { return Iterator_t( ( it.index + 1 < it.limit ) ? it.index + 1 : InvalidIndex(), it.limit ); } int GetIndex( const Iterator_t &it ) const { return it.index; } bool IsIdxAfter( int i, const Iterator_t &it ) const { return i > it.index; } bool IsValidIterator( const Iterator_t &it ) const { return IsIdxValid( it.index ) && ( it.index < it.limit ); } Iterator_t InvalidIterator() const { return Iterator_t( InvalidIndex(), 0 ); } private: T *m_pMemory; #ifdef REMEMBER_ALLOC_SIZE_FOR_VALGRIND size_t m_nCurAllocSize; #endif }; //----------------------------------------------------------------------------- // constructor, destructor //----------------------------------------------------------------------------- template< class T, class I > CUtlMemory::CUtlMemory( int nGrowSize, int nInitAllocationCount ) : m_pMemory(0), m_nAllocationCount( nInitAllocationCount ), m_nGrowSize( nGrowSize ) { ValidateGrowSize(); Assert( nGrowSize >= 0 ); if (m_nAllocationCount) { UTLMEMORY_TRACK_ALLOC(); MEM_ALLOC_CREDIT_CLASS(); m_pMemory = (T*)malloc( m_nAllocationCount * sizeof(T) ); } } template< class T, class I > CUtlMemory::CUtlMemory( T* pMemory, int numElements ) : m_pMemory(pMemory), m_nAllocationCount( numElements ) { // Special marker indicating externally supplied modifyable memory m_nGrowSize = EXTERNAL_BUFFER_MARKER; } template< class T, class I > CUtlMemory::CUtlMemory( const T* pMemory, int numElements ) : m_pMemory( (T*)pMemory ), m_nAllocationCount( numElements ) { // Special marker indicating externally supplied modifyable memory m_nGrowSize = EXTERNAL_CONST_BUFFER_MARKER; } template< class T, class I > CUtlMemory::~CUtlMemory() { Purge(); #ifdef _DEBUG m_pMemory = reinterpret_cast< T* >( 0xFEFEBAAD ); m_nAllocationCount = 0x7BADF00D; #endif } template< class T, class I > CUtlMemory::CUtlMemory( CUtlMemory&& moveFrom ) : m_pMemory(moveFrom.m_pMemory) , m_nAllocationCount(moveFrom.m_nAllocationCount) , m_nGrowSize(moveFrom.m_nGrowSize) { moveFrom.m_pMemory = nullptr; moveFrom.m_nAllocationCount = 0; moveFrom.m_nGrowSize = 0; } template< class T, class I > CUtlMemory& CUtlMemory::operator=( CUtlMemory&& moveFrom ) { // Copy member variables to locals before purge to handle self-assignment T* pMemory = moveFrom.m_pMemory; int nAllocationCount = moveFrom.m_nAllocationCount; int nGrowSize = moveFrom.m_nGrowSize; moveFrom.m_pMemory = nullptr; moveFrom.m_nAllocationCount = 0; moveFrom.m_nGrowSize = 0; // If this is a self-assignment, Purge() is a no-op here Purge(); m_pMemory = pMemory; m_nAllocationCount = nAllocationCount; m_nGrowSize = nGrowSize; return *this; } template< class T, class I > void CUtlMemory::Init( int nGrowSize /*= 0*/, int nInitSize /*= 0*/ ) { Purge(); m_nGrowSize = nGrowSize; m_nAllocationCount = nInitSize; ValidateGrowSize(); Assert( nGrowSize >= 0 ); if (m_nAllocationCount) { UTLMEMORY_TRACK_ALLOC(); MEM_ALLOC_CREDIT_CLASS(); m_pMemory = (T*)malloc( m_nAllocationCount * sizeof(T) ); } } //----------------------------------------------------------------------------- // Fast swap //----------------------------------------------------------------------------- template< class T, class I > void CUtlMemory::Swap( CUtlMemory &mem ) { V_swap( m_nGrowSize, mem.m_nGrowSize ); V_swap( m_pMemory, mem.m_pMemory ); V_swap( m_nAllocationCount, mem.m_nAllocationCount ); } //----------------------------------------------------------------------------- // Switches the buffer from an external memory buffer to a reallocatable buffer //----------------------------------------------------------------------------- template< class T, class I > void CUtlMemory::ConvertToGrowableMemory( int nGrowSize ) { if ( !IsExternallyAllocated() ) return; m_nGrowSize = nGrowSize; if (m_nAllocationCount) { UTLMEMORY_TRACK_ALLOC(); MEM_ALLOC_CREDIT_CLASS(); int nNumBytes = m_nAllocationCount * sizeof(T); T *pMemory = (T*)malloc( nNumBytes ); memcpy( pMemory, m_pMemory, nNumBytes ); m_pMemory = pMemory; } else { m_pMemory = NULL; } } //----------------------------------------------------------------------------- // Attaches the buffer to external memory.... //----------------------------------------------------------------------------- template< class T, class I > void CUtlMemory::SetExternalBuffer( T* pMemory, int numElements ) { // Blow away any existing allocated memory Purge(); m_pMemory = pMemory; m_nAllocationCount = numElements; // Indicate that we don't own the memory m_nGrowSize = EXTERNAL_BUFFER_MARKER; } template< class T, class I > void CUtlMemory::SetExternalBuffer( const T* pMemory, int numElements ) { // Blow away any existing allocated memory Purge(); m_pMemory = const_cast( pMemory ); m_nAllocationCount = numElements; // Indicate that we don't own the memory m_nGrowSize = EXTERNAL_CONST_BUFFER_MARKER; } template< class T, class I > void CUtlMemory::AssumeMemory( T* pMemory, int numElements ) { // Blow away any existing allocated memory Purge(); // Simply take the pointer but don't mark us as external m_pMemory = pMemory; m_nAllocationCount = numElements; } template< class T, class I > void *CUtlMemory::DetachMemory() { if ( IsExternallyAllocated() ) return NULL; void *pMemory = m_pMemory; m_pMemory = 0; m_nAllocationCount = 0; return pMemory; } template< class T, class I > inline T* CUtlMemory::Detach() { return (T*)DetachMemory(); } //----------------------------------------------------------------------------- // element access //----------------------------------------------------------------------------- template< class T, class I > inline T& CUtlMemory::operator[]( I i ) { Assert( !IsReadOnly() ); Assert( IsIdxValid(i) ); return m_pMemory[i]; } template< class T, class I > inline const T& CUtlMemory::operator[]( I i ) const { Assert( IsIdxValid(i) ); return m_pMemory[i]; } template< class T, class I > inline T& CUtlMemory::Element( I i ) { Assert( !IsReadOnly() ); Assert( IsIdxValid(i) ); return m_pMemory[i]; } template< class T, class I > inline const T& CUtlMemory::Element( I i ) const { Assert( IsIdxValid(i) ); return m_pMemory[i]; } //----------------------------------------------------------------------------- // is the memory externally allocated? //----------------------------------------------------------------------------- template< class T, class I > bool CUtlMemory::IsExternallyAllocated() const { return (m_nGrowSize < 0); } //----------------------------------------------------------------------------- // is the memory read only? //----------------------------------------------------------------------------- template< class T, class I > bool CUtlMemory::IsReadOnly() const { return (m_nGrowSize == EXTERNAL_CONST_BUFFER_MARKER); } template< class T, class I > void CUtlMemory::SetGrowSize( int nSize ) { Assert( !IsExternallyAllocated() ); Assert( nSize >= 0 ); m_nGrowSize = nSize; ValidateGrowSize(); } //----------------------------------------------------------------------------- // Gets the base address (can change when adding elements!) //----------------------------------------------------------------------------- template< class T, class I > inline T* CUtlMemory::Base() { Assert( !IsReadOnly() ); return m_pMemory; } template< class T, class I > inline const T *CUtlMemory::Base() const { return m_pMemory; } //----------------------------------------------------------------------------- // Size //----------------------------------------------------------------------------- template< class T, class I > inline int CUtlMemory::NumAllocated() const { return m_nAllocationCount; } template< class T, class I > inline int CUtlMemory::Count() const { return m_nAllocationCount; } //----------------------------------------------------------------------------- // Is element index valid? //----------------------------------------------------------------------------- template< class T, class I > inline bool CUtlMemory::IsIdxValid( I i ) const { // GCC warns if I is an unsigned type and we do a ">= 0" against it (since the comparison is always 0). // We get the warning even if we cast inside the expression. It only goes away if we assign to another variable. long x = i; return ( x >= 0 ) && ( x < m_nAllocationCount ); } //----------------------------------------------------------------------------- // Grows the memory //----------------------------------------------------------------------------- inline int UtlMemory_CalcNewAllocationCount( int nAllocationCount, int nGrowSize, int nNewSize, int nBytesItem ) { if ( nGrowSize ) { nAllocationCount = ((1 + ((nNewSize - 1) / nGrowSize)) * nGrowSize); } else { if ( !nAllocationCount ) { // Compute an allocation which is at least as big as a cache line... nAllocationCount = (31 + nBytesItem) / nBytesItem; // If the requested amount is larger then compute an allocation which // is exactly the right size. Otherwise we can end up with wasted memory // when CUtlVector::EnsureCount(n) is called. if ( nAllocationCount < nNewSize ) nAllocationCount = nNewSize; } while (nAllocationCount < nNewSize) { #ifndef _X360 nAllocationCount *= 2; #else int nNewAllocationCount = ( nAllocationCount * 9) / 8; // 12.5 % if ( nNewAllocationCount > nAllocationCount ) nAllocationCount = nNewAllocationCount; else nAllocationCount *= 2; #endif } } return nAllocationCount; } template< class T, class I > void CUtlMemory::Grow( int num ) { Assert( num > 0 ); if ( IsExternallyAllocated() ) { // Can't grow a buffer whose memory was externally allocated Assert(0); return; } // Make sure we have at least numallocated + num allocations. // Use the grow rules specified for this memory (in m_nGrowSize) int nAllocationRequested = m_nAllocationCount + num; UTLMEMORY_TRACK_FREE(); int nNewAllocationCount = UtlMemory_CalcNewAllocationCount( m_nAllocationCount, m_nGrowSize, nAllocationRequested, sizeof(T) ); // if m_nAllocationRequested wraps index type I, recalculate if ( ( int )( I )nNewAllocationCount < nAllocationRequested ) { if ( ( int )( I )nNewAllocationCount == 0 && ( int )( I )( nNewAllocationCount - 1 ) >= nAllocationRequested ) { --nNewAllocationCount; // deal w/ the common case of m_nAllocationCount == MAX_USHORT + 1 } else { if ( ( int )( I )nAllocationRequested != nAllocationRequested ) { // we've been asked to grow memory to a size s.t. the index type can't address the requested amount of memory Assert( 0 ); return; } while ( ( int )( I )nNewAllocationCount < nAllocationRequested ) { nNewAllocationCount = ( nNewAllocationCount + nAllocationRequested ) / 2; } } } m_nAllocationCount = nNewAllocationCount; UTLMEMORY_TRACK_ALLOC(); if (m_pMemory) { MEM_ALLOC_CREDIT_CLASS(); m_pMemory = (T*)realloc( m_pMemory, m_nAllocationCount * sizeof(T) ); Assert( m_pMemory ); } else { MEM_ALLOC_CREDIT_CLASS(); m_pMemory = (T*)malloc( m_nAllocationCount * sizeof(T) ); Assert( m_pMemory ); } } //----------------------------------------------------------------------------- // Makes sure we've got at least this much memory //----------------------------------------------------------------------------- template< class T, class I > inline void CUtlMemory::EnsureCapacity( int num ) { if (m_nAllocationCount >= num) return; if ( IsExternallyAllocated() ) { // Can't grow a buffer whose memory was externally allocated Assert(0); return; } UTLMEMORY_TRACK_FREE(); m_nAllocationCount = num; UTLMEMORY_TRACK_ALLOC(); if (m_pMemory) { MEM_ALLOC_CREDIT_CLASS(); m_pMemory = (T*)realloc( m_pMemory, m_nAllocationCount * sizeof(T) ); } else { MEM_ALLOC_CREDIT_CLASS(); m_pMemory = (T*)malloc( m_nAllocationCount * sizeof(T) ); } } //----------------------------------------------------------------------------- // Memory deallocation //----------------------------------------------------------------------------- template< class T, class I > void CUtlMemory::Purge() { if ( !IsExternallyAllocated() ) { if (m_pMemory) { UTLMEMORY_TRACK_FREE(); free( (void*)m_pMemory ); m_pMemory = 0; } m_nAllocationCount = 0; } } template< class T, class I > void CUtlMemory::Purge( int numElements ) { Assert( numElements >= 0 ); if( numElements > m_nAllocationCount ) { // Ensure this isn't a grow request in disguise. Assert( numElements <= m_nAllocationCount ); return; } // If we have zero elements, simply do a purge: if( numElements == 0 ) { Purge(); return; } if ( IsExternallyAllocated() ) { // Can't shrink a buffer whose memory was externally allocated, fail silently like purge return; } // If the number of elements is the same as the allocation count, we are done. if( numElements == m_nAllocationCount ) { return; } if( !m_pMemory ) { // Allocation count is non zero, but memory is null. Assert( m_pMemory ); return; } UTLMEMORY_TRACK_FREE(); m_nAllocationCount = numElements; UTLMEMORY_TRACK_ALLOC(); // Allocation count > 0, shrink it down. MEM_ALLOC_CREDIT_CLASS(); m_pMemory = (T*)realloc( m_pMemory, m_nAllocationCount * sizeof(T) ); } //----------------------------------------------------------------------------- // The CUtlMemory class: // A growable memory class which doubles in size by default. //----------------------------------------------------------------------------- template< class T, int nAlignment > class CUtlMemoryAligned : public CUtlMemory { public: // constructor, destructor CUtlMemoryAligned( int nGrowSize = 0, int nInitSize = 0 ); CUtlMemoryAligned( T* pMemory, int numElements ); CUtlMemoryAligned( const T* pMemory, int numElements ); ~CUtlMemoryAligned(); // Attaches the buffer to external memory.... void SetExternalBuffer( T* pMemory, int numElements ); void SetExternalBuffer( const T* pMemory, int numElements ); // Grows the memory, so that at least allocated + num elements are allocated void Grow( int num = 1 ); // Makes sure we've got at least this much memory void EnsureCapacity( int num ); // Memory deallocation void Purge(); // Purge all but the given number of elements (NOT IMPLEMENTED IN CUtlMemoryAligned) void Purge( int numElements ) { Assert( 0 ); } private: void *Align( const void *pAddr ); }; //----------------------------------------------------------------------------- // Aligns a pointer //----------------------------------------------------------------------------- template< class T, int nAlignment > void *CUtlMemoryAligned::Align( const void *pAddr ) { size_t nAlignmentMask = nAlignment - 1; return (void*)( ((size_t)pAddr + nAlignmentMask) & (~nAlignmentMask) ); } //----------------------------------------------------------------------------- // constructor, destructor //----------------------------------------------------------------------------- template< class T, int nAlignment > CUtlMemoryAligned::CUtlMemoryAligned( int nGrowSize, int nInitAllocationCount ) { CUtlMemory::m_pMemory = 0; CUtlMemory::m_nAllocationCount = nInitAllocationCount; CUtlMemory::m_nGrowSize = nGrowSize; this->ValidateGrowSize(); // Alignment must be a power of two COMPILE_TIME_ASSERT( (nAlignment & (nAlignment-1)) == 0 ); Assert( (nGrowSize >= 0) && (nGrowSize != CUtlMemory::EXTERNAL_BUFFER_MARKER) ); if ( CUtlMemory::m_nAllocationCount ) { UTLMEMORY_TRACK_ALLOC(); MEM_ALLOC_CREDIT_CLASS(); CUtlMemory::m_pMemory = (T*)_aligned_malloc( nInitAllocationCount * sizeof(T), nAlignment ); } } template< class T, int nAlignment > CUtlMemoryAligned::CUtlMemoryAligned( T* pMemory, int numElements ) { // Special marker indicating externally supplied memory CUtlMemory::m_nGrowSize = CUtlMemory::EXTERNAL_BUFFER_MARKER; CUtlMemory::m_pMemory = (T*)Align( pMemory ); CUtlMemory::m_nAllocationCount = ( (int)(pMemory + numElements) - (int)CUtlMemory::m_pMemory ) / sizeof(T); } template< class T, int nAlignment > CUtlMemoryAligned::CUtlMemoryAligned( const T* pMemory, int numElements ) { // Special marker indicating externally supplied memory CUtlMemory::m_nGrowSize = CUtlMemory::EXTERNAL_CONST_BUFFER_MARKER; CUtlMemory::m_pMemory = (T*)Align( pMemory ); CUtlMemory::m_nAllocationCount = ( (int)(pMemory + numElements) - (int)CUtlMemory::m_pMemory ) / sizeof(T); } template< class T, int nAlignment > CUtlMemoryAligned::~CUtlMemoryAligned() { Purge(); } //----------------------------------------------------------------------------- // Attaches the buffer to external memory.... //----------------------------------------------------------------------------- template< class T, int nAlignment > void CUtlMemoryAligned::SetExternalBuffer( T* pMemory, int numElements ) { // Blow away any existing allocated memory Purge(); CUtlMemory::m_pMemory = (T*)Align( pMemory ); CUtlMemory::m_nAllocationCount = ( (int)(pMemory + numElements) - (int)CUtlMemory::m_pMemory ) / sizeof(T); // Indicate that we don't own the memory CUtlMemory::m_nGrowSize = CUtlMemory::EXTERNAL_BUFFER_MARKER; } template< class T, int nAlignment > void CUtlMemoryAligned::SetExternalBuffer( const T* pMemory, int numElements ) { // Blow away any existing allocated memory Purge(); CUtlMemory::m_pMemory = (T*)Align( pMemory ); CUtlMemory::m_nAllocationCount = ( (int)(pMemory + numElements) - (int)CUtlMemory::m_pMemory ) / sizeof(T); // Indicate that we don't own the memory CUtlMemory::m_nGrowSize = CUtlMemory::EXTERNAL_CONST_BUFFER_MARKER; } //----------------------------------------------------------------------------- // Grows the memory //----------------------------------------------------------------------------- template< class T, int nAlignment > void CUtlMemoryAligned::Grow( int num ) { Assert( num > 0 ); if ( this->IsExternallyAllocated() ) { // Can't grow a buffer whose memory was externally allocated Assert(0); return; } UTLMEMORY_TRACK_FREE(); // Make sure we have at least numallocated + num allocations. // Use the grow rules specified for this memory (in m_nGrowSize) int nAllocationRequested = CUtlMemory::m_nAllocationCount + num; CUtlMemory::m_nAllocationCount = UtlMemory_CalcNewAllocationCount( CUtlMemory::m_nAllocationCount, CUtlMemory::m_nGrowSize, nAllocationRequested, sizeof(T) ); UTLMEMORY_TRACK_ALLOC(); if ( CUtlMemory::m_pMemory ) { MEM_ALLOC_CREDIT_CLASS(); CUtlMemory::m_pMemory = (T*)MemAlloc_ReallocAligned( CUtlMemory::m_pMemory, CUtlMemory::m_nAllocationCount * sizeof(T), nAlignment ); Assert( CUtlMemory::m_pMemory ); } else { MEM_ALLOC_CREDIT_CLASS(); CUtlMemory::m_pMemory = (T*)MemAlloc_AllocAligned( CUtlMemory::m_nAllocationCount * sizeof(T), nAlignment ); Assert( CUtlMemory::m_pMemory ); } } //----------------------------------------------------------------------------- // Makes sure we've got at least this much memory //----------------------------------------------------------------------------- template< class T, int nAlignment > inline void CUtlMemoryAligned::EnsureCapacity( int num ) { if ( CUtlMemory::m_nAllocationCount >= num ) return; if ( this->IsExternallyAllocated() ) { // Can't grow a buffer whose memory was externally allocated Assert(0); return; } UTLMEMORY_TRACK_FREE(); CUtlMemory::m_nAllocationCount = num; UTLMEMORY_TRACK_ALLOC(); if ( CUtlMemory::m_pMemory ) { MEM_ALLOC_CREDIT_CLASS(); CUtlMemory::m_pMemory = (T*)MemAlloc_ReallocAligned( CUtlMemory::m_pMemory, CUtlMemory::m_nAllocationCount * sizeof(T), nAlignment ); } else { MEM_ALLOC_CREDIT_CLASS(); CUtlMemory::m_pMemory = (T*)MemAlloc_AllocAligned( CUtlMemory::m_nAllocationCount * sizeof(T), nAlignment ); } } //----------------------------------------------------------------------------- // Memory deallocation //----------------------------------------------------------------------------- template< class T, int nAlignment > void CUtlMemoryAligned::Purge() { if ( !this->IsExternallyAllocated() ) { if ( CUtlMemory::m_pMemory ) { UTLMEMORY_TRACK_FREE(); MemAlloc_FreeAligned( CUtlMemory::m_pMemory ); CUtlMemory::m_pMemory = 0; } CUtlMemory::m_nAllocationCount = 0; } } #include "tier0/memdbgoff.h" #endif // UTLMEMORY_H