css_enhanced_waf/togles/linuxwin/glmgr_flush.inl

633 lines
26 KiB
Text
Raw Normal View History

2021-11-20 22:48:13 +01:00
// BE VERY VERY CAREFUL what you do in these function. They are extremely hot, and calling the wrong GL API's in here will crush perf. (especially on NVidia threaded drivers).
#include "togles/linuxwin/glmgr.h"
2021-11-20 22:48:13 +01:00
FORCEINLINE uint32 bitmix32(uint32 a)
{
a -= (a<<6);
//a ^= (a>>17);
//a -= (a<<9);
a ^= (a<<4);
//a -= (a<<3);
//a ^= (a<<10);
a ^= (a>>15);
return a;
}
#ifndef OSX
FORCEINLINE GLuint GLMContext::FindSamplerObject( const GLMTexSamplingParams &desiredParams )
{
int h = bitmix32( desiredParams.m_bits + desiredParams.m_borderColor ) & ( cSamplerObjectHashSize - 1 );
while ( ( m_samplerObjectHash[h].m_params.m_bits != desiredParams.m_bits ) || ( m_samplerObjectHash[h].m_params.m_borderColor != desiredParams.m_borderColor ) )
{
if ( !m_samplerObjectHash[h].m_params.m_packed.m_isValid )
break;
if ( ++h >= cSamplerObjectHashSize )
h = 0;
}
if ( !m_samplerObjectHash[h].m_params.m_packed.m_isValid )
{
GLMTexSamplingParams &hashParams = m_samplerObjectHash[h].m_params;
hashParams = desiredParams;
hashParams.SetToSamplerObject( m_samplerObjectHash[h].m_samplerObject );
if ( ++m_nSamplerObjectHashNumEntries == cSamplerObjectHashSize )
{
// TODO: Support resizing
Error( "Sampler object hash is full, increase cSamplerObjectHashSize" );
}
}
return m_samplerObjectHash[h].m_samplerObject;
}
#endif // !OSX
// BE VERY CAREFUL WHAT YOU DO IN HERE. This is called on every batch, even seemingly simple changes can kill perf.
FORCEINLINE void GLMContext::FlushDrawStates( uint nStartIndex, uint nEndIndex, uint nBaseVertex ) // shadersOn = true for draw calls, false for clear calls
{
Assert( m_drawingLang == kGLMGLSL ); // no support for ARB shaders right now (and NVidia reports that they aren't worth targeting under Windows/Linux for various reasons anyway)
Assert( ( m_drawingFBO == m_boundDrawFBO ) && ( m_drawingFBO == m_boundReadFBO ) ); // this check MUST succeed
Assert( m_pDevice->m_pVertDecl );
#if GLMDEBUG
GLM_FUNC;
#endif
GL_BATCH_PERF( m_FlushStats.m_nTotalBatchFlushes++; )
#if GLMDEBUG
bool tex0_srgb = (m_boundDrawFBO[0].m_attach[0].m_tex->m_layout->m_key.m_texFlags & kGLMTexSRGB) != 0;
// you can only actually use the sRGB FB state on some systems.. check caps
if (m_caps.m_hasGammaWrites)
{
GLBlendEnableSRGB_t writeSRGBState;
m_BlendEnableSRGB.Read( &writeSRGBState, 0 ); // the client set value, not the API-written value yet..
bool draw_srgb = writeSRGBState.enable != 0;
if (draw_srgb)
{
if (tex0_srgb)
{
// good - draw mode and color tex agree
}
else
{
// bad
// Client has asked to write sRGB into a texture that can't do it.
// there is no way to satisfy this unless we change the RT tex and we avoid doing that.
// (although we might consider a ** ONE TIME ** promotion.
// this shouldn't be a big deal if the tex format is one where it doesn't matter like 32F.
GLMPRINTF(("-Z- srgb-enabled FBO conflict: attached tex %08x [%s] is not SRGB", m_boundDrawFBO[0].m_attach[0].m_tex, m_boundDrawFBO[0].m_attach[0].m_tex->m_layout->m_layoutSummary ));
// do we shoot down the srgb-write state for this batch?
// I think the runtime will just ignore it.
}
}
else
{
if (tex0_srgb)
{
// odd - client is not writing sRGB into a texture which *can* do it.
//GLMPRINTF(( "-Z- srgb-disabled FBO conflict: attached tex %08x [%s] is SRGB", m_boundFBO[0].m_attach[0].m_tex, m_boundFBO[0].m_attach[0].m_tex->m_layout->m_layoutSummary ));
//writeSRGBState.enable = true;
//m_BlendEnableSRGB.Write( &writeSRGBState );
}
else
{
// good - draw mode and color tex agree
}
}
}
#endif
Assert( m_drawingProgram[ kGLMVertexProgram ] );
Assert( m_drawingProgram[ kGLMFragmentProgram ] );
Assert( ( m_drawingProgram[kGLMVertexProgram]->m_type == kGLMVertexProgram ) && ( m_drawingProgram[kGLMFragmentProgram]->m_type == kGLMFragmentProgram ) );
Assert( m_drawingProgram[ kGLMVertexProgram ]->m_bTranslatedProgram && m_drawingProgram[ kGLMFragmentProgram ]->m_bTranslatedProgram );
#if GLMDEBUG
// Depth compare mode check
uint nCurMask = 1, nShaderSamplerMask = m_drawingProgram[kGLMFragmentProgram]->m_samplerMask;
for ( int nSamplerIndex = 0; nSamplerIndex < GLM_SAMPLER_COUNT; ++nSamplerIndex, nCurMask <<= 1 )
{
if ( !m_samplers[nSamplerIndex].m_pBoundTex )
continue;
if ( m_samplers[nSamplerIndex].m_pBoundTex->m_layout->m_mipCount == 1 )
{
if ( m_samplers[nSamplerIndex].m_samp.m_packed.m_mipFilter == D3DTEXF_LINEAR )
{
GLMDebugPrintf( "Sampler %u has mipmap filtering enabled on a texture without mipmaps! (texture name: %s, pixel shader: %s)!\n",
nSamplerIndex,
m_samplers[nSamplerIndex].m_pBoundTex->m_debugLabel ? m_samplers[nSamplerIndex].m_pBoundTex->m_debugLabel : "?",
m_drawingProgram[kGLMFragmentProgram]->m_shaderName );
}
}
if ( ( nShaderSamplerMask & nCurMask ) == 0 )
continue;
if ( m_samplers[nSamplerIndex].m_pBoundTex->m_layout->m_mipCount == 1 )
{
if ( m_samplers[nSamplerIndex].m_samp.m_packed.m_mipFilter == D3DTEXF_LINEAR )
{
// Note this is not always an error - shadow buffer debug visualization shaders purposely want to read shadow depths (and not do the comparison)
GLMDebugPrintf( "Sampler %u has mipmap filtering enabled on a texture without mipmaps! (texture name: %s, pixel shader: %s)!\n",
nSamplerIndex,
m_samplers[nSamplerIndex].m_pBoundTex->m_debugLabel ? m_samplers[nSamplerIndex].m_pBoundTex->m_debugLabel : "?",
m_drawingProgram[kGLMFragmentProgram]->m_shaderName );
}
}
bool bSamplerIsDepth = ( m_samplers[nSamplerIndex].m_pBoundTex->m_layout->m_key.m_texFlags & kGLMTexIsDepth ) != 0;
bool bSamplerShadow = m_samplers[nSamplerIndex].m_samp.m_packed.m_compareMode != 0;
bool bShaderShadow = ( m_drawingProgram[kGLMFragmentProgram]->m_nShadowDepthSamplerMask & nCurMask ) != 0;
if ( bShaderShadow )
{
// Shader expects shadow depth sampling at this sampler index
// Must have a depth texture and compare mode must be enabled
if ( !bSamplerIsDepth || !bSamplerShadow )
{
// FIXME: This occasionally occurs in L4D2 when CShaderAPIDx8::ExecuteCommandBuffer() sets the TEXTURE_WHITE texture in the flashlight depth texture slot.
GLMDebugPrintf( "Sampler %u's compare mode (%u) or format (depth=%u) is not consistent with pixel shader's compare mode (%u) (texture name: %s, pixel shader: %s)!\n",
nSamplerIndex, bSamplerShadow, bSamplerIsDepth, bShaderShadow,
m_samplers[nSamplerIndex].m_pBoundTex->m_debugLabel ? m_samplers[nSamplerIndex].m_pBoundTex->m_debugLabel : "?",
m_drawingProgram[kGLMFragmentProgram]->m_shaderName );
}
}
else
{
// Shader does not expect shadow depth sampling as this sampler index
// We don't care if comparemode is enabled, but we can't have a depth texture in this sampler
if ( bSamplerIsDepth )
{
GLMDebugPrintf( "Sampler %u is a depth texture but the pixel shader's shadow depth sampler mask does not expect depth here (texture name: %s, pixel shader: %s)!\n",
nSamplerIndex,
m_samplers[nSamplerIndex].m_pBoundTex->m_debugLabel ? m_samplers[nSamplerIndex].m_pBoundTex->m_debugLabel : "?",
m_drawingProgram[kGLMFragmentProgram]->m_shaderName );
}
}
}
#endif
if ( m_bDirtyPrograms )
{
m_bDirtyPrograms = false;
CGLMShaderPair *pNewPair = m_pairCache->SelectShaderPair( m_drawingProgram[ kGLMVertexProgram ], m_drawingProgram[ kGLMFragmentProgram ], 0 );
if ( pNewPair != m_pBoundPair )
{
#if GL_BATCH_TELEMETRY_ZONES
tmZone( TELEMETRY_LEVEL2, TMZF_NONE, "NewProgram" );
#endif
if ( !pNewPair->m_valid )
{
if ( !pNewPair->ValidateProgramPair() )
{
goto flush_error_exit;
}
}
gGL->glUseProgram( (GLuint)pNewPair->m_program );
GL_BATCH_PERF( m_FlushStats.m_nTotalProgramPairChanges++; )
if ( !m_pBoundPair )
{
GL_BATCH_PERF( m_FlushStats.m_nNewPS++; )
GL_BATCH_PERF( m_FlushStats.m_nNewVS++; )
}
else
{
GL_BATCH_PERF( if ( pNewPair->m_fragmentProg != m_pBoundPair->m_fragmentProg ) m_FlushStats.m_nNewPS++; )
GL_BATCH_PERF( if ( pNewPair->m_vertexProg != m_pBoundPair->m_vertexProg ) m_FlushStats.m_nNewVS++; )
}
#if GL_BATCH_PERF_ANALYSIS
tmMessage( TELEMETRY_LEVEL2, TMMF_ICON_NOTE, "V:%s (V Regs:%u V Bone Regs:%u) F:%s (F Regs:%u)",
m_drawingProgram[ kGLMVertexProgram ]->m_shaderName,
m_drawingProgram[ kGLMVertexProgram ]->m_descs[kGLMGLSL].m_highWater,
m_drawingProgram[ kGLMVertexProgram ]->m_descs[kGLMGLSL].m_VSHighWaterBone,
m_drawingProgram[ kGLMFragmentProgram ]->m_shaderName,
m_drawingProgram[ kGLMFragmentProgram ]->m_descs[kGLMGLSL].m_highWater );
#endif
m_pBoundPair = pNewPair;
// set the dirty levels appropriately since the program changed and has never seen any of the current values.
m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone = 0;
m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone = m_drawingProgram[ kGLMVertexProgram ]->m_descs[kGLMGLSL].m_highWater;
m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterBone = m_drawingProgram[ kGLMVertexProgram ]->m_descs[kGLMGLSL].m_VSHighWaterBone;
m_programParamsF[kGLMFragmentProgram].m_firstDirtySlotNonBone = 0;
m_programParamsF[kGLMFragmentProgram].m_dirtySlotHighWaterNonBone = m_drawingProgram[ kGLMFragmentProgram ]->m_descs[kGLMGLSL].m_highWater;
// bool and int dirty levels get set to max, we don't have actual high water marks for them
// code which sends the values must clamp on these types.
m_programParamsB[kGLMVertexProgram].m_dirtySlotCount = kGLMProgramParamBoolLimit;
m_programParamsB[kGLMFragmentProgram].m_dirtySlotCount = kGLMProgramParamBoolLimit;
m_programParamsI[kGLMVertexProgram].m_dirtySlotCount = kGLMProgramParamInt4Limit;
m_programParamsI[kGLMFragmentProgram].m_dirtySlotCount = 0;
// check fragment buffers used (MRT)
if( pNewPair->m_fragmentProg->m_fragDataMask != m_fragDataMask )
{
gGL->glDrawBuffers( pNewPair->m_fragmentProg->m_numDrawBuffers, pNewPair->m_fragmentProg->m_drawBuffers );
m_fragDataMask = pNewPair->m_fragmentProg->m_fragDataMask;
}
}
}
Assert( m_ViewportBox.GetData().width == (int)( m_ViewportBox.GetData().widthheight & 0xFFFF ) );
Assert( m_ViewportBox.GetData().height == (int)( m_ViewportBox.GetData().widthheight >> 16 ) );
m_pBoundPair->UpdateScreenUniform( m_ViewportBox.GetData().widthheight );
GL_BATCH_PERF( m_FlushStats.m_nNumChangedSamplers += m_nNumDirtySamplers );
#if !defined( OSX ) // no support for sampler objects in OSX 10.6 (GL 2.1 profile)
if ( m_bUseSamplerObjects)
{
while ( m_nNumDirtySamplers )
{
const uint nSamplerIndex = m_nDirtySamplers[--m_nNumDirtySamplers];
Assert( ( nSamplerIndex < GLM_SAMPLER_COUNT ) && ( !m_nDirtySamplerFlags[nSamplerIndex]) );
m_nDirtySamplerFlags[nSamplerIndex] = 1;
gGL->glBindSampler( nSamplerIndex, FindSamplerObject( m_samplers[nSamplerIndex].m_samp ) );
GL_BATCH_PERF( m_FlushStats.m_nNumSamplingParamsChanged++ );
#if defined( OSX ) // valid for OSX only if using GL 3.3 context
CGLMTex *pTex = m_samplers[nSamplerIndex].m_pBoundTex;
if( pTex && !( gGL->m_bHave_GL_EXT_texture_sRGB_decode ) )
{
// see if requested SRGB state differs from the known one
bool texSRGB = ( pTex->m_layout->m_key.m_texFlags & kGLMTexSRGB ) != 0;
bool glSampSRGB = m_samplers[nSamplerIndex].m_samp.m_packed.m_srgb;
if ( texSRGB != glSampSRGB ) // mismatch
{
pTex->HandleSRGBMismatch( glSampSRGB, pTex->m_srgbFlipCount );
}
}
#endif
}
}
else
#endif // if !defined( OSX )
{
while ( m_nNumDirtySamplers )
{
const uint nSamplerIndex = m_nDirtySamplers[--m_nNumDirtySamplers];
Assert( ( nSamplerIndex < GLM_SAMPLER_COUNT ) && ( !m_nDirtySamplerFlags[nSamplerIndex]) );
m_nDirtySamplerFlags[nSamplerIndex] = 1;
CGLMTex *pTex = m_samplers[nSamplerIndex].m_pBoundTex;
if ( ( pTex ) && ( !( pTex->m_SamplingParams == m_samplers[nSamplerIndex].m_samp ) ) )
{
SelectTMU( nSamplerIndex );
m_samplers[nSamplerIndex].m_samp.DeltaSetToTarget( pTex->m_texGLTarget, pTex->m_SamplingParams );
pTex->m_SamplingParams = m_samplers[nSamplerIndex].m_samp;
#if defined( OSX )
if( pTex && !( gGL->m_bHave_GL_EXT_texture_sRGB_decode ) )
{
// see if requested SRGB state differs from the known one
bool texSRGB = ( pTex->m_layout->m_key.m_texFlags & kGLMTexSRGB ) != 0;
bool glSampSRGB = m_samplers[nSamplerIndex].m_samp.m_packed.m_srgb;
if ( texSRGB != glSampSRGB ) // mismatch
{
pTex->HandleSRGBMismatch( glSampSRGB, pTex->m_srgbFlipCount );
}
}
#endif
}
}
}
// vertex stage --------------------------------------------------------------------
if ( m_bUseBoneUniformBuffers )
{
// vertex stage --------------------------------------------------------------------
if ( m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone )
{
int firstDirtySlot = m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone;
int dirtySlotHighWater = MIN( m_drawingProgram[kGLMVertexProgram]->m_descs[kGLMGLSL].m_highWater, m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone );
GLint vconstLoc = m_pBoundPair->m_locVertexParams;
if ( ( vconstLoc >= 0 ) && ( dirtySlotHighWater > firstDirtySlot ) )
{
#if GL_BATCH_TELEMETRY_ZONES
tmZone( TELEMETRY_LEVEL2, TMZF_NONE, "VSNonBoneUniformUpdate %u %u", firstDirtySlot, dirtySlotHighWater );
#endif
int numSlots = dirtySlotHighWater - DXABSTRACT_VS_FIRST_BONE_SLOT;
// consts after the bones (c217 onwards), since we use the concatenated destination array vc[], upload these consts starting from vc[58]
if( numSlots > 0 )
{
gGL->glUniform4fv( m_pBoundPair->m_UniformBufferParams[kGLMVertexProgram][DXABSTRACT_VS_FIRST_BONE_SLOT], numSlots, &m_programParamsF[kGLMVertexProgram].m_values[(DXABSTRACT_VS_LAST_BONE_SLOT+1)][0] );
dirtySlotHighWater = DXABSTRACT_VS_FIRST_BONE_SLOT;
GL_BATCH_PERF( m_nTotalVSUniformCalls++; )
GL_BATCH_PERF( m_nTotalVSUniformsSet += numSlots; )
GL_BATCH_PERF( m_FlushStats.m_nFirstVSConstant = DXABSTRACT_VS_FIRST_BONE_SLOT; )
GL_BATCH_PERF( m_FlushStats.m_nNumVSConstants += numSlots; )
}
numSlots = dirtySlotHighWater - firstDirtySlot;
// consts before the bones (c0-c57)
if( numSlots > 0 )
{
gGL->glUniform4fv( m_pBoundPair->m_UniformBufferParams[kGLMVertexProgram][firstDirtySlot], dirtySlotHighWater - firstDirtySlot, &m_programParamsF[kGLMVertexProgram].m_values[firstDirtySlot][0] );
GL_BATCH_PERF( m_nTotalVSUniformCalls++; )
GL_BATCH_PERF( m_nTotalVSUniformsSet += dirtySlotHighWater - firstDirtySlot; )
GL_BATCH_PERF( m_FlushStats.m_nFirstVSConstant = firstDirtySlot; )
GL_BATCH_PERF( m_FlushStats.m_nNumVSConstants += (dirtySlotHighWater - firstDirtySlot); )
}
}
m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone = 256;
m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone = 0;
}
if ( m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterBone )
{
const GLint vconstBoneLoc = m_pBoundPair->m_locVertexBoneParams;
if ( vconstBoneLoc >= 0 )
{
int shaderSlotsBone = 0;
if ( ( m_drawingProgram[kGLMVertexProgram]->m_descs[kGLMGLSL].m_VSHighWaterBone > 0 ) && ( m_nMaxUsedVertexProgramConstantsHint > DXABSTRACT_VS_FIRST_BONE_SLOT ) )
{
shaderSlotsBone = MIN( m_drawingProgram[kGLMVertexProgram]->m_descs[kGLMGLSL].m_VSHighWaterBone, m_nMaxUsedVertexProgramConstantsHint - DXABSTRACT_VS_FIRST_BONE_SLOT );
}
int dirtySlotHighWaterBone = MIN( shaderSlotsBone, m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterBone );
if ( dirtySlotHighWaterBone )
{
uint nNumBoneRegs = dirtySlotHighWaterBone;
#if GL_BATCH_TELEMETRY_ZONES
tmZone( TELEMETRY_LEVEL2, TMZF_NONE, "VSBoneUniformUpdate %u", nNumBoneRegs );
#endif
gGL->glUniform4fv( vconstBoneLoc, nNumBoneRegs, &m_programParamsF[kGLMVertexProgram].m_values[DXABSTRACT_VS_FIRST_BONE_SLOT][0] );
GL_BATCH_PERF( m_nTotalVSUniformBoneCalls++; )
GL_BATCH_PERF( m_nTotalVSUniformsBoneSet += nNumBoneRegs; )
GL_BATCH_PERF( m_FlushStats.m_nNumVSBoneConstants += nNumBoneRegs; )
}
m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterBone = 0;
}
}
}
else
{
if ( m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone )
{
const int nMaxUsedShaderSlots = m_drawingProgram[kGLMVertexProgram]->m_descs[kGLMGLSL].m_highWater;
int firstDirtySlot = m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone;
int dirtySlotHighWater = MIN( nMaxUsedShaderSlots, m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone );
GLint vconstLoc = m_pBoundPair->m_locVertexParams;
if ( ( vconstLoc >= 0 ) && ( dirtySlotHighWater > firstDirtySlot ) )
{
#if GL_BATCH_TELEMETRY_ZONES
tmZone( TELEMETRY_LEVEL2, TMZF_NONE, "VSNonBoneUniformUpdate %u %u", firstDirtySlot, dirtySlotHighWater );
#endif
gGL->glUniform4fv( m_pBoundPair->m_UniformBufferParams[kGLMVertexProgram][firstDirtySlot], dirtySlotHighWater - firstDirtySlot, &m_programParamsF[kGLMVertexProgram].m_values[firstDirtySlot][0] );
GL_BATCH_PERF( m_nTotalVSUniformCalls++; )
GL_BATCH_PERF( m_nTotalVSUniformsSet += dirtySlotHighWater - firstDirtySlot; )
GL_BATCH_PERF( m_FlushStats.m_nFirstVSConstant = firstDirtySlot; )
GL_BATCH_PERF( m_FlushStats.m_nNumVSConstants += (dirtySlotHighWater - firstDirtySlot); )
}
m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone = 256;
m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone = 0;
}
}
// see if VS uses i0, b0, b1, b2, b3.
// use a glUniform1i to set any one of these if active. skip all of them if no dirties reported.
// my kingdom for the UBO extension!
// ------- bools ---------- //
if ( m_pBoundPair->m_bHasBoolOrIntUniforms )
{
if ( m_programParamsB[kGLMVertexProgram].m_dirtySlotCount ) // optimize this later after the float param pushes are proven out
{
const uint nLimit = MIN( CGLMShaderPair::cMaxVertexShaderBoolUniforms, m_programParamsB[kGLMVertexProgram].m_dirtySlotCount );
for ( uint i = 0; i < nLimit; ++i )
{
GLint constBoolLoc = m_pBoundPair->m_locVertexBool[i];
if ( constBoolLoc >= 0 )
gGL->glUniform1i( constBoolLoc, m_programParamsB[kGLMVertexProgram].m_values[i] );
}
m_programParamsB[kGLMVertexProgram].m_dirtySlotCount = 0;
}
if ( m_programParamsB[kGLMFragmentProgram].m_dirtySlotCount ) // optimize this later after the float param pushes are proven out
{
const uint nLimit = MIN( CGLMShaderPair::cMaxFragmentShaderBoolUniforms, m_programParamsB[kGLMFragmentProgram].m_dirtySlotCount );
for ( uint i = 0; i < nLimit; ++i )
{
GLint constBoolLoc = m_pBoundPair->m_locFragmentBool[i];
if ( constBoolLoc >= 0 )
gGL->glUniform1i( constBoolLoc, m_programParamsB[kGLMFragmentProgram].m_values[i] );
}
m_programParamsB[kGLMFragmentProgram].m_dirtySlotCount = 0;
}
if ( m_programParamsI[kGLMVertexProgram].m_dirtySlotCount )
{
GLint vconstInt0Loc = m_pBoundPair->m_locVertexInteger0; //glGetUniformLocationARB( prog, "i0");
if ( vconstInt0Loc >= 0 )
{
gGL->glUniform1i( vconstInt0Loc, m_programParamsI[kGLMVertexProgram].m_values[0][0] ); //FIXME magic number
}
m_programParamsI[kGLMVertexProgram].m_dirtySlotCount = 0;
}
}
if( !gGL->m_bHave_GL_QCOM_alpha_test && m_pBoundPair->m_locAlphaRef )
{
if( !m_AlphaTestEnable.GetData().enable )
gGL->glUniform1f( m_pBoundPair->m_locAlphaRef, 0.0 );
else
gGL->glUniform1f( m_pBoundPair->m_locAlphaRef, m_AlphaTestFunc.GetData().ref );
}
2021-11-20 22:48:13 +01:00
Assert( ( m_pDevice->m_streams[0].m_vtxBuffer && ( m_pDevice->m_streams[0].m_vtxBuffer->m_vtxBuffer == m_pDevice->m_vtx_buffers[0] ) ) || ( ( !m_pDevice->m_streams[0].m_vtxBuffer ) && ( m_pDevice->m_vtx_buffers[0] == m_pDevice->m_pDummy_vtx_buffer ) ) );
Assert( ( m_pDevice->m_streams[1].m_vtxBuffer && ( m_pDevice->m_streams[1].m_vtxBuffer->m_vtxBuffer == m_pDevice->m_vtx_buffers[1] ) ) || ( ( !m_pDevice->m_streams[1].m_vtxBuffer ) && ( m_pDevice->m_vtx_buffers[1] == m_pDevice->m_pDummy_vtx_buffer ) ) );
Assert( ( m_pDevice->m_streams[2].m_vtxBuffer && ( m_pDevice->m_streams[2].m_vtxBuffer->m_vtxBuffer == m_pDevice->m_vtx_buffers[2] ) ) || ( ( !m_pDevice->m_streams[2].m_vtxBuffer ) && ( m_pDevice->m_vtx_buffers[2] == m_pDevice->m_pDummy_vtx_buffer ) ) );
Assert( ( m_pDevice->m_streams[3].m_vtxBuffer && ( m_pDevice->m_streams[3].m_vtxBuffer->m_vtxBuffer == m_pDevice->m_vtx_buffers[3] ) ) || ( ( !m_pDevice->m_streams[3].m_vtxBuffer ) && ( m_pDevice->m_vtx_buffers[3] == m_pDevice->m_pDummy_vtx_buffer ) ) );
uint nCurTotalBufferRevision;
nCurTotalBufferRevision = m_pDevice->m_vtx_buffers[0]->m_nRevision + m_pDevice->m_vtx_buffers[1]->m_nRevision + m_pDevice->m_vtx_buffers[2]->m_nRevision + m_pDevice->m_vtx_buffers[3]->m_nRevision;
// If any of these inputs have changed, we need to enumerate through all of the expected GL vertex attribs and modify anything in the GL layer that have changed.
// This is not always a win, but it is a net win on NVidia (by 1-4.8% depending on whether driver threading is enabled).
if ( ( nCurTotalBufferRevision != m_CurAttribs.m_nTotalBufferRevision ) ||
( m_CurAttribs.m_pVertDecl != m_pDevice->m_pVertDecl ) ||
( m_CurAttribs.m_vtxAttribMap[0] != reinterpret_cast<const uint64 *>(m_pDevice->m_vertexShader->m_vtxAttribMap)[0] ) ||
( m_CurAttribs.m_vtxAttribMap[1] != reinterpret_cast<const uint64 *>(m_pDevice->m_vertexShader->m_vtxAttribMap)[1] ) ||
( memcmp( m_CurAttribs.m_streams, m_pDevice->m_streams, sizeof( m_pDevice->m_streams ) ) != 0 ) )
{
// This branch is taken 52.2% of the time in the L4D2 test1 (long) timedemo.
#if GL_BATCH_TELEMETRY_ZONES
tmZone( TELEMETRY_LEVEL2, TMZF_NONE, "SetVertexAttribs" );
#endif
m_CurAttribs.m_nTotalBufferRevision = nCurTotalBufferRevision;
m_CurAttribs.m_pVertDecl = m_pDevice->m_pVertDecl;
m_CurAttribs.m_vtxAttribMap[0] = reinterpret_cast<const uint64 *>(m_pDevice->m_vertexShader->m_vtxAttribMap)[0];
m_CurAttribs.m_vtxAttribMap[1] = reinterpret_cast<const uint64 *>(m_pDevice->m_vertexShader->m_vtxAttribMap)[1];
memcpy( m_CurAttribs.m_streams, m_pDevice->m_streams, sizeof( m_pDevice->m_streams ) );
unsigned char *pVertexShaderAttribMap = m_pDevice->m_vertexShader->m_vtxAttribMap;
const int nMaxVertexAttributesToCheck = m_drawingProgram[ kGLMVertexProgram ]->m_maxVertexAttrs;
IDirect3DVertexDeclaration9 *pVertDecl = m_pDevice->m_pVertDecl;
const uint8 *pVertexAttribDescToStreamIndex = pVertDecl->m_VertexAttribDescToStreamIndex;
for( int nMask = 1, nIndex = 0; nIndex < nMaxVertexAttributesToCheck; ++nIndex, nMask <<= 1 )
{
uint8 vertexShaderAttrib = pVertexShaderAttribMap[ nIndex ];
uint nDeclIndex = pVertexAttribDescToStreamIndex[vertexShaderAttrib];
if ( nDeclIndex == 0xFF )
{
// Not good - the vertex shader has an attribute which can't be located in the decl!
// The D3D9 debug runtime is also going to complain.
Assert( 0 );
if ( m_lastKnownVertexAttribMask & nMask )
{
m_lastKnownVertexAttribMask &= ~nMask;
gGL->glDisableVertexAttribArray( nIndex );
}
continue;
}
D3DVERTEXELEMENT9_GL *pDeclElem = &pVertDecl->m_elements[nDeclIndex];
Assert( ( ( vertexShaderAttrib >> 4 ) == pDeclElem->m_dxdecl.Usage ) && ( ( vertexShaderAttrib & 0x0F ) == pDeclElem->m_dxdecl.UsageIndex) );
const uint nStreamIndex = pDeclElem->m_dxdecl.Stream;
const D3DStreamDesc *pStream = &m_pDevice->m_streams[ nStreamIndex ];
CGLMBuffer *pBuf = m_pDevice->m_vtx_buffers[ nStreamIndex ];
if ( pBuf == m_pDevice->m_pDummy_vtx_buffer )
{
Assert( pStream->m_vtxBuffer == NULL );
// this shader doesn't use that pair.
if ( m_lastKnownVertexAttribMask & nMask )
{
m_lastKnownVertexAttribMask &= ~nMask;
gGL->glDisableVertexAttribArray( nIndex );
}
continue;
}
Assert( pStream->m_vtxBuffer->m_vtxBuffer == pBuf );
int nBufOffset = pDeclElem->m_gldecl.m_offset + pStream->m_offset;
Assert( nBufOffset >= 0 );
Assert( nBufOffset < (int)pBuf->m_nSize );
if ( pBuf->m_bUsingPersistentBuffer )
{
nBufOffset += pBuf->m_nPersistentBufferStartOffset;
}
SetBufAndVertexAttribPointer( nIndex, pBuf->GetHandle(),
pStream->m_stride, pDeclElem->m_gldecl.m_datatype, pDeclElem->m_gldecl.m_normalized, pDeclElem->m_gldecl.m_nCompCount,
2022-06-19 14:07:41 +02:00
reinterpret_cast< const GLvoid * >( reinterpret_cast< intp >( pBuf->m_pPseudoBuf ) + nBufOffset ),
2021-11-20 22:48:13 +01:00
pBuf->m_nRevision );
if ( !( m_lastKnownVertexAttribMask & nMask ) )
{
m_lastKnownVertexAttribMask |= nMask;
gGL->glEnableVertexAttribArray( nIndex );
}
}
for( int nIndex = nMaxVertexAttributesToCheck; nIndex < m_nNumSetVertexAttributes; nIndex++ )
{
gGL->glDisableVertexAttribArray( nIndex );
m_lastKnownVertexAttribMask &= ~(1 << nIndex);
}
m_nNumSetVertexAttributes = nMaxVertexAttributesToCheck;
}
// fragment stage --------------------------------------------------------------------
if ( m_programParamsF[kGLMFragmentProgram].m_dirtySlotHighWaterNonBone )
{
GLint fconstLoc;
fconstLoc = m_pBoundPair->m_locFragmentParams;
if ( fconstLoc >= 0 )
{
const int nMaxUsedShaderSlots = m_drawingProgram[kGLMFragmentProgram]->m_descs[kGLMGLSL].m_highWater;
int firstDirtySlot = m_programParamsF[kGLMFragmentProgram].m_firstDirtySlotNonBone;
int dirtySlotHighWater = MIN( nMaxUsedShaderSlots, m_programParamsF[kGLMFragmentProgram].m_dirtySlotHighWaterNonBone );
if ( dirtySlotHighWater > firstDirtySlot )
{
#if GL_BATCH_TELEMETRY_ZONES
tmZone( TELEMETRY_LEVEL2, TMZF_NONE, "PSUniformUpdate %u %u", firstDirtySlot, dirtySlotHighWater );
#endif
gGL->glUniform4fv( m_pBoundPair->m_UniformBufferParams[kGLMFragmentProgram][firstDirtySlot], dirtySlotHighWater - firstDirtySlot, &m_programParamsF[kGLMFragmentProgram].m_values[firstDirtySlot][0] );
GL_BATCH_PERF( m_nTotalPSUniformCalls++; )
GL_BATCH_PERF( m_nTotalPSUniformsSet += dirtySlotHighWater - firstDirtySlot; )
GL_BATCH_PERF( m_FlushStats.m_nFirstPSConstant = firstDirtySlot; )
GL_BATCH_PERF( m_FlushStats.m_nNumPSConstants += (dirtySlotHighWater - firstDirtySlot); )
}
m_programParamsF[kGLMFragmentProgram].m_firstDirtySlotNonBone = 256;
m_programParamsF[kGLMFragmentProgram].m_dirtySlotHighWaterNonBone = 0;
}
}
return;
flush_error_exit:
m_pBoundPair = NULL;
m_bDirtyPrograms = true;
return;
}