css_enhanced_waf/utils/vrad/vradstaticprops.cpp

2695 lines
88 KiB
C++
Raw Normal View History

2020-04-22 18:56:21 +02:00
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $Revision: $
// $NoKeywords: $
//
// This file contains code to allow us to associate client data with bsp leaves.
//
//=============================================================================//
#include "vrad.h"
#include "mathlib/vector.h"
#include "UtlBuffer.h"
#include "utlvector.h"
#include "GameBSPFile.h"
#include "BSPTreeData.h"
#include "VPhysics_Interface.h"
#include "Studio.h"
#include "Optimize.h"
#include "Bsplib.h"
#include "CModel.h"
#include "PhysDll.h"
#include "phyfile.h"
#include "collisionutils.h"
#include "tier1/KeyValues.h"
#include "pacifier.h"
#include "materialsystem/imaterial.h"
#include "materialsystem/hardwareverts.h"
#include "materialsystem/hardwaretexels.h"
#include "byteswap.h"
#include "mpivrad.h"
#include "vtf/vtf.h"
#include "tier1/utldict.h"
#include "tier1/utlsymbol.h"
#include "bitmap/tgawriter.h"
#include "messbuf.h"
#include "vmpi.h"
#include "vmpi_distribute_work.h"
#define ALIGN_TO_POW2(x,y) (((x)+(y-1))&~(y-1))
// identifies a vertex embedded in solid
// lighting will be copied from nearest valid neighbor
struct badVertex_t
{
int m_ColorVertex;
Vector m_Position;
Vector m_Normal;
};
// a final colored vertex
struct colorVertex_t
{
Vector m_Color;
Vector m_Position;
bool m_bValid;
};
// a texel suitable for a model
struct colorTexel_t
{
Vector m_Color;
Vector m_WorldPosition;
Vector m_WorldNormal;
float m_fDistanceToTri; // If we are outside of the triangle, how far away is it?
bool m_bValid;
bool m_bPossiblyInteresting;
};
class CComputeStaticPropLightingResults
{
public:
~CComputeStaticPropLightingResults()
{
m_ColorVertsArrays.PurgeAndDeleteElements();
m_ColorTexelsArrays.PurgeAndDeleteElements();
}
CUtlVector< CUtlVector<colorVertex_t>* > m_ColorVertsArrays;
CUtlVector< CUtlVector<colorTexel_t>* > m_ColorTexelsArrays;
};
//-----------------------------------------------------------------------------
struct Rasterizer
{
struct Location
{
Vector barycentric;
Vector2D uv;
bool insideTriangle;
};
Rasterizer(Vector2D t0, Vector2D t1, Vector2D t2, size_t resX, size_t resY)
: mT0(t0)
, mT1(t1)
, mT2(t2)
, mResX(resX)
, mResY(resY)
, mUvStepX(1.0f / resX)
, mUvStepY(1.0f / resY)
{
Build();
}
CUtlVector< Location >::iterator begin() { return mRasterizedLocations.begin(); }
CUtlVector< Location >::iterator end() { return mRasterizedLocations.end(); }
void Build();
inline size_t GetRow(float y) const { return size_t(y * mResY); }
inline size_t GetCol(float x) const { return size_t(x * mResX); }
inline size_t GetLinearPos( const CUtlVector< Location >::iterator& it ) const
{
// Given an iterator, return what the linear position in the buffer would be for the data.
return (size_t)(GetRow(it->uv.y) * mResX)
+ (size_t)(GetCol(it->uv.x));
}
private:
const Vector2D mT0, mT1, mT2;
const size_t mResX, mResY;
const float mUvStepX, mUvStepY;
// Right now, we just fill this out and directly iterate over it.
// It could be large. This is a memory/speed tradeoff. We could instead generate them
// on demand.
CUtlVector< Location > mRasterizedLocations;
};
//-----------------------------------------------------------------------------
inline Vector ComputeBarycentric( Vector2D _edgeC, Vector2D _edgeA, Vector2D _edgeB, float _dAA, float _dAB, float _dBB, float _invDenom )
{
float dCA = _edgeC.Dot(_edgeA);
float dCB = _edgeC.Dot(_edgeB);
Vector retVal;
retVal.y = (_dBB * dCA - _dAB * dCB) * _invDenom;
retVal.z = (_dAA * dCB - _dAB * dCA) * _invDenom;
retVal.x = 1.0f - retVal.y - retVal.z;
return retVal;
}
//-----------------------------------------------------------------------------
void Rasterizer::Build()
{
// For now, use the barycentric method. It's easy, I'm lazy.
// We can optimize later if it's a performance issue.
const float baseX = mUvStepX / 2.0f;
const float baseY = mUvStepY / 2.0f;
float fMinX = min(min(mT0.x, mT1.x), mT2.x);
float fMinY = min(min(mT0.y, mT1.y), mT2.y);
float fMaxX = max(max(mT0.x, mT1.x), mT2.x);
float fMaxY = max(max(mT0.y, mT1.y), mT2.y);
// Degenerate. Consider warning about these, but otherwise no problem.
if (fMinX == fMaxX || fMinY == fMaxY)
return;
// Clamp to 0..1
fMinX = max(0, fMinX);
fMinY = max(0, fMinY);
fMaxX = min(1.0f, fMaxX);
fMaxY = min(1.0f, fMaxY);
// We puff the interesting area up by 1 so we can hit an inflated region for the necessary bilerp data.
// If we wanted to support better texturing (almost definitely unnecessary), we'd change this to a larger size.
const int kFilterSampleRadius = 1;
int iMinX = GetCol(fMinX) - kFilterSampleRadius;
int iMinY = GetRow(fMinY) - kFilterSampleRadius;
int iMaxX = GetCol(fMaxX) + 1 + kFilterSampleRadius;
int iMaxY = GetRow(fMaxY) + 1 + kFilterSampleRadius;
// Clamp to valid texture (integer) locations
iMinX = max(0, iMinX);
iMinY = max(0, iMinY);
iMaxX = min(iMaxX, mResX - 1);
iMaxY = min(iMaxY, mResY - 1);
// Set the size to be as expected.
// TODO: Pass this in from outside to minimize allocations
int count = (iMaxY - iMinY + 1)
* (iMaxX - iMinX + 1);
mRasterizedLocations.EnsureCount(count);
memset( mRasterizedLocations.Base(), 0, mRasterizedLocations.Count() * sizeof( Location ) );
// Computing Barycentrics adapted from here http://gamedev.stackexchange.com/questions/23743/whats-the-most-efficient-way-to-find-barycentric-coordinates
Vector2D edgeA = mT1 - mT0;
Vector2D edgeB = mT2 - mT0;
float dAA = edgeA.Dot(edgeA);
float dAB = edgeA.Dot(edgeB);
float dBB = edgeB.Dot(edgeB);
float invDenom = 1.0f / (dAA * dBB - dAB * dAB);
int linearPos = 0;
for (int j = iMinY; j <= iMaxY; ++j) {
for (int i = iMinX; i <= iMaxX; ++i) {
Vector2D testPt( i * mUvStepX + baseX, j * mUvStepY + baseY );
Vector barycentric = ComputeBarycentric( testPt - mT0, edgeA, edgeB, dAA, dAB, dBB, invDenom );
// Test whether the point is inside the triangle.
// MCJOHNTODO: Edge rules and whatnot--right now we re-rasterize points on the edge.
Location& newLoc = mRasterizedLocations[linearPos++];
newLoc.barycentric = barycentric;
newLoc.uv = testPt;
newLoc.insideTriangle = (barycentric.x >= 0.0f && barycentric.x <= 1.0f && barycentric.y >= 0.0f && barycentric.y <= 1.0f && barycentric.z >= 0.0f && barycentric.z <= 1.0f);
}
}
}
//-----------------------------------------------------------------------------
// Globals
//-----------------------------------------------------------------------------
CUtlSymbolTable g_ForcedTextureShadowsModels;
// DON'T USE THIS FROM WITHIN A THREAD. THERE IS A THREAD CONTEXT CREATED
// INSIDE PropTested_t. USE THAT INSTEAD.
IPhysicsCollision *s_pPhysCollision = NULL;
static void ConvertTexelDataToTexture(unsigned int _resX, unsigned int _resY, ImageFormat _destFmt, const CUtlVector<colorTexel_t>& _srcTexels, CUtlMemory<byte>* _outTexture);
// Such a monstrosity. :(
static void GenerateLightmapSamplesForMesh( const matrix3x4_t& _matPos, const matrix3x4_t& _matNormal, int _iThread, int _skipProp, int _nFlags, int _lightmapResX, int _lightmapResY,
studiohdr_t* _pStudioHdr, mstudiomodel_t* _pStudioModel, OptimizedModel::ModelHeader_t* _pVtxModel, int _meshID,
CComputeStaticPropLightingResults *_pResults );
// Debug function, converts lightmaps to linear space then dumps them out.
// TODO: Write out the file in a .dds instead of a .tga, in whatever format we're supposed to use.
static void DumpLightmapLinear( const char* _dstFilename, const CUtlVector<colorTexel_t>& _srcTexels, int _width, int _height );
//-----------------------------------------------------------------------------
// Vrad's static prop manager
//-----------------------------------------------------------------------------
class CVradStaticPropMgr : public IVradStaticPropMgr
{
public:
// constructor, destructor
CVradStaticPropMgr();
virtual ~CVradStaticPropMgr();
// methods of IStaticPropMgr
void Init();
void Shutdown();
// iterate all the instanced static props and compute their vertex lighting
void ComputeLighting( int iThread );
private:
// VMPI stuff.
static void VMPI_ProcessStaticProp_Static( int iThread, uint64 iStaticProp, MessageBuffer *pBuf );
static void VMPI_ReceiveStaticPropResults_Static( uint64 iStaticProp, MessageBuffer *pBuf, int iWorker );
void VMPI_ProcessStaticProp( int iThread, int iStaticProp, MessageBuffer *pBuf );
void VMPI_ReceiveStaticPropResults( int iStaticProp, MessageBuffer *pBuf, int iWorker );
// local thread version
static void ThreadComputeStaticPropLighting( int iThread, void *pUserData );
void ComputeLightingForProp( int iThread, int iStaticProp );
// Methods associated with unserializing static props
void UnserializeModelDict( CUtlBuffer& buf );
void UnserializeModels( CUtlBuffer& buf );
void UnserializeStaticProps();
// Creates a collision model
void CreateCollisionModel( char const* pModelName );
private:
// Unique static prop models
struct StaticPropDict_t
{
vcollide_t m_loadedModel;
CPhysCollide* m_pModel;
Vector m_Mins; // Bounding box is in local coordinates
Vector m_Maxs;
studiohdr_t* m_pStudioHdr;
CUtlBuffer m_VtxBuf;
CUtlVector<int> m_textureShadowIndex; // each texture has an index if this model casts texture shadows
CUtlVector<int> m_triangleMaterialIndex;// each triangle has an index if this model casts texture shadows
};
struct MeshData_t
{
CUtlVector<Vector> m_VertexColors;
CUtlMemory<byte> m_TexelsEncoded;
int m_nLod;
};
// A static prop instance
struct CStaticProp
{
Vector m_Origin;
QAngle m_Angles;
Vector m_mins;
Vector m_maxs;
Vector m_LightingOrigin;
int m_ModelIdx;
BSPTreeDataHandle_t m_Handle;
CUtlVector<MeshData_t> m_MeshData;
int m_Flags;
bool m_bLightingOriginValid;
// Note that all lightmaps for a given prop share the same resolution (and format)--and there can be multiple lightmaps
// per prop (if there are multiple pieces--the watercooler is an example).
// This is effectively because there's not a good way in hammer for a prop to say "this should be the resolution
// of each of my sub-pieces."
ImageFormat m_LightmapImageFormat;
unsigned int m_LightmapImageWidth;
unsigned int m_LightmapImageHeight;
};
// Enumeration context
struct EnumContext_t
{
PropTested_t* m_pPropTested;
Ray_t const* m_pRay;
};
// The list of all static props
CUtlVector <StaticPropDict_t> m_StaticPropDict;
CUtlVector <CStaticProp> m_StaticProps;
bool m_bIgnoreStaticPropTrace;
void ComputeLighting( CStaticProp &prop, int iThread, int prop_index, CComputeStaticPropLightingResults *pResults );
void ApplyLightingToStaticProp( int iStaticProp, CStaticProp &prop, const CComputeStaticPropLightingResults *pResults );
void SerializeLighting();
void AddPolysForRayTrace();
void BuildTriList( CStaticProp &prop );
};
//-----------------------------------------------------------------------------
// Expose IVradStaticPropMgr to vrad
//-----------------------------------------------------------------------------
static CVradStaticPropMgr g_StaticPropMgr;
IVradStaticPropMgr* StaticPropMgr()
{
return &g_StaticPropMgr;
}
//-----------------------------------------------------------------------------
// constructor, destructor
//-----------------------------------------------------------------------------
CVradStaticPropMgr::CVradStaticPropMgr()
{
// set to ignore static prop traces
m_bIgnoreStaticPropTrace = false;
}
CVradStaticPropMgr::~CVradStaticPropMgr()
{
}
//-----------------------------------------------------------------------------
// Makes sure the studio model is a static prop
//-----------------------------------------------------------------------------
bool IsStaticProp( studiohdr_t* pHdr )
{
if (!(pHdr->flags & STUDIOHDR_FLAGS_STATIC_PROP))
return false;
return true;
}
//-----------------------------------------------------------------------------
// Load a file into a Utlbuf
//-----------------------------------------------------------------------------
static bool LoadFile( char const* pFileName, CUtlBuffer& buf )
{
if ( !g_pFullFileSystem )
return false;
return g_pFullFileSystem->ReadFile( pFileName, NULL, buf );
}
//-----------------------------------------------------------------------------
// Constructs the file name from the model name
//-----------------------------------------------------------------------------
static char const* ConstructFileName( char const* pModelName )
{
static char buf[1024];
sprintf( buf, "%s%s", gamedir, pModelName );
return buf;
}
//-----------------------------------------------------------------------------
// Computes a convex hull from a studio mesh
//-----------------------------------------------------------------------------
static CPhysConvex* ComputeConvexHull( mstudiomesh_t* pMesh, studiohdr_t *pStudioHdr )
{
const mstudio_meshvertexdata_t *vertData = pMesh->GetVertexData( (void *)pStudioHdr );
Assert( vertData ); // This can only return NULL on X360 for now
// Generate a list of all verts in the mesh
Vector** ppVerts = (Vector**)_alloca(pMesh->numvertices * sizeof(Vector*) );
for (int i = 0; i < pMesh->numvertices; ++i)
{
ppVerts[i] = vertData->Position(i);
}
// Generate a convex hull from the verts
return s_pPhysCollision->ConvexFromVerts( ppVerts, pMesh->numvertices );
}
//-----------------------------------------------------------------------------
// Computes a convex hull from the studio model
//-----------------------------------------------------------------------------
CPhysCollide* ComputeConvexHull( studiohdr_t* pStudioHdr )
{
CUtlVector<CPhysConvex*> convexHulls;
for (int body = 0; body < pStudioHdr->numbodyparts; ++body )
{
mstudiobodyparts_t *pBodyPart = pStudioHdr->pBodypart( body );
for( int model = 0; model < pBodyPart->nummodels; ++model )
{
mstudiomodel_t *pStudioModel = pBodyPart->pModel( model );
for( int mesh = 0; mesh < pStudioModel->nummeshes; ++mesh )
{
// Make a convex hull for each mesh
// NOTE: This won't work unless the model has been compiled
// with $staticprop
mstudiomesh_t *pStudioMesh = pStudioModel->pMesh( mesh );
convexHulls.AddToTail( ComputeConvexHull( pStudioMesh, pStudioHdr ) );
}
}
}
// Convert an array of convex elements to a compiled collision model
// (this deletes the convex elements)
return s_pPhysCollision->ConvertConvexToCollide( convexHulls.Base(), convexHulls.Size() );
}
//-----------------------------------------------------------------------------
// Load studio model vertex data from a file...
//-----------------------------------------------------------------------------
bool LoadStudioModel( char const* pModelName, CUtlBuffer& buf )
{
// No luck, gotta build it
// Construct the file name...
if (!LoadFile( pModelName, buf ))
{
Warning("Error! Unable to load model \"%s\"\n", pModelName );
return false;
}
// Check that it's valid
if (strncmp ((const char *) buf.PeekGet(), "IDST", 4) &&
strncmp ((const char *) buf.PeekGet(), "IDAG", 4))
{
Warning("Error! Invalid model file \"%s\"\n", pModelName );
return false;
}
studiohdr_t* pHdr = (studiohdr_t*)buf.PeekGet();
Studio_ConvertStudioHdrToNewVersion( pHdr );
if (pHdr->version != STUDIO_VERSION)
{
Warning("Error! Invalid model version \"%s\"\n", pModelName );
return false;
}
if (!IsStaticProp(pHdr))
{
Warning("Error! To use model \"%s\"\n"
" as a static prop, it must be compiled with $staticprop!\n", pModelName );
return false;
}
// ensure reset
pHdr->pVertexBase = NULL;
pHdr->pIndexBase = NULL;
return true;
}
bool LoadStudioCollisionModel( char const* pModelName, CUtlBuffer& buf )
{
char tmp[1024];
Q_strncpy( tmp, pModelName, sizeof( tmp ) );
Q_SetExtension( tmp, ".phy", sizeof( tmp ) );
// No luck, gotta build it
if (!LoadFile( tmp, buf ))
{
// this is not an error, the model simply has no PHY file
return false;
}
phyheader_t *header = (phyheader_t *)buf.PeekGet();
if ( header->size != sizeof(*header) || header->solidCount <= 0 )
return false;
return true;
}
bool LoadVTXFile( char const* pModelName, const studiohdr_t *pStudioHdr, CUtlBuffer& buf )
{
char filename[MAX_PATH];
// construct filename
Q_StripExtension( pModelName, filename, sizeof( filename ) );
strcat( filename, ".dx80.vtx" );
if ( !LoadFile( filename, buf ) )
{
Warning( "Error! Unable to load file \"%s\"\n", filename );
return false;
}
OptimizedModel::FileHeader_t* pVtxHdr = (OptimizedModel::FileHeader_t *)buf.Base();
// Check that it's valid
if ( pVtxHdr->version != OPTIMIZED_MODEL_FILE_VERSION )
{
Warning( "Error! Invalid VTX file version: %d, expected %d \"%s\"\n", pVtxHdr->version, OPTIMIZED_MODEL_FILE_VERSION, filename );
return false;
}
if ( pVtxHdr->checkSum != pStudioHdr->checksum )
{
Warning( "Error! Invalid VTX file checksum: %d, expected %d \"%s\"\n", pVtxHdr->checkSum, pStudioHdr->checksum, filename );
return false;
}
return true;
}
//-----------------------------------------------------------------------------
// Gets a vertex position from a strip index
//-----------------------------------------------------------------------------
inline static Vector* PositionFromIndex( const mstudio_meshvertexdata_t *vertData, mstudiomesh_t* pMesh, OptimizedModel::StripGroupHeader_t* pStripGroup, int i )
{
OptimizedModel::Vertex_t* pVert = pStripGroup->pVertex( i );
return vertData->Position( pVert->origMeshVertID );
}
//-----------------------------------------------------------------------------
// Purpose: Writes a glview text file containing the collision surface in question
// Input : *pCollide -
// *pFilename -
//-----------------------------------------------------------------------------
void DumpCollideToGlView( vcollide_t *pCollide, const char *pFilename )
{
if ( !pCollide )
return;
Msg("Writing %s...\n", pFilename );
FILE *fp = fopen( pFilename, "w" );
for (int i = 0; i < pCollide->solidCount; ++i)
{
Vector *outVerts;
int vertCount = s_pPhysCollision->CreateDebugMesh( pCollide->solids[i], &outVerts );
int triCount = vertCount / 3;
int vert = 0;
unsigned char r = (i & 1) * 64 + 64;
unsigned char g = (i & 2) * 64 + 64;
unsigned char b = (i & 4) * 64 + 64;
float fr = r / 255.0f;
float fg = g / 255.0f;
float fb = b / 255.0f;
for ( int i = 0; i < triCount; i++ )
{
fprintf( fp, "3\n" );
fprintf( fp, "%6.3f %6.3f %6.3f %.2f %.3f %.3f\n",
outVerts[vert].x, outVerts[vert].y, outVerts[vert].z, fr, fg, fb );
vert++;
fprintf( fp, "%6.3f %6.3f %6.3f %.2f %.3f %.3f\n",
outVerts[vert].x, outVerts[vert].y, outVerts[vert].z, fr, fg, fb );
vert++;
fprintf( fp, "%6.3f %6.3f %6.3f %.2f %.3f %.3f\n",
outVerts[vert].x, outVerts[vert].y, outVerts[vert].z, fr, fg, fb );
vert++;
}
s_pPhysCollision->DestroyDebugMesh( vertCount, outVerts );
}
fclose( fp );
}
static bool PointInTriangle( const Vector2D &p, const Vector2D &v0, const Vector2D &v1, const Vector2D &v2 )
{
float coords[3];
GetBarycentricCoords2D( v0, v1, v2, p, coords );
for ( int i = 0; i < 3; i++ )
{
if ( coords[i] < 0.0f || coords[i] > 1.0f )
return false;
}
float sum = coords[0] + coords[1] + coords[2];
if ( sum > 1.0f )
return false;
return true;
}
bool LoadFileIntoBuffer( CUtlBuffer &buf, const char *pFilename )
{
FileHandle_t fileHandle = g_pFileSystem->Open( pFilename, "rb" );
if ( !fileHandle )
return false;
// Get the file size
int texSize = g_pFileSystem->Size( fileHandle );
buf.EnsureCapacity( texSize );
int nBytesRead = g_pFileSystem->Read( buf.Base(), texSize, fileHandle );
g_pFileSystem->Close( fileHandle );
buf.SeekPut( CUtlBuffer::SEEK_HEAD, nBytesRead );
buf.SeekGet( CUtlBuffer::SEEK_HEAD, 0 );
return true;
}
// keeps a list of all textures that cast shadows via alpha channel
class CShadowTextureList
{
public:
// This loads a vtf and converts it to RGB8888 format
unsigned char *LoadVTFRGB8888( const char *pName, int *pWidth, int *pHeight, bool *pClampU, bool *pClampV )
{
char szPath[MAX_PATH];
Q_strncpy( szPath, "materials/", sizeof( szPath ) );
Q_strncat( szPath, pName, sizeof( szPath ), COPY_ALL_CHARACTERS );
Q_strncat( szPath, ".vtf", sizeof( szPath ), COPY_ALL_CHARACTERS );
Q_FixSlashes( szPath, CORRECT_PATH_SEPARATOR );
CUtlBuffer buf;
if ( !LoadFileIntoBuffer( buf, szPath ) )
return NULL;
IVTFTexture *pTex = CreateVTFTexture();
if (!pTex->Unserialize( buf ))
return NULL;
Msg("Loaded alpha texture %s\n", szPath );
unsigned char *pSrcImage = pTex->ImageData( 0, 0, 0, 0, 0, 0 );
int iWidth = pTex->Width();
int iHeight = pTex->Height();
ImageFormat dstFormat = IMAGE_FORMAT_RGBA8888;
ImageFormat srcFormat = pTex->Format();
*pClampU = (pTex->Flags() & TEXTUREFLAGS_CLAMPS) ? true : false;
*pClampV = (pTex->Flags() & TEXTUREFLAGS_CLAMPT) ? true : false;
unsigned char *pDstImage = new unsigned char[ImageLoader::GetMemRequired( iWidth, iHeight, 1, dstFormat, false )];
if( !ImageLoader::ConvertImageFormat( pSrcImage, srcFormat,
pDstImage, dstFormat, iWidth, iHeight, 0, 0 ) )
{
delete[] pDstImage;
return NULL;
}
*pWidth = iWidth;
*pHeight = iHeight;
return pDstImage;
}
// Checks the database for the material and loads if necessary
// returns true if found and pIndex will be the index, -1 if no alpha shadows
bool FindOrLoadIfValid( const char *pMaterialName, int *pIndex )
{
*pIndex = -1;
int index = m_Textures.Find(pMaterialName);
bool bFound = false;
if ( index != m_Textures.InvalidIndex() )
{
bFound = true;
*pIndex = index;
}
else
{
KeyValues *pVMT = new KeyValues("vmt");
CUtlBuffer buf(0,0,CUtlBuffer::TEXT_BUFFER);
LoadFileIntoBuffer( buf, pMaterialName );
if ( pVMT->LoadFromBuffer( pMaterialName, buf ) )
{
bFound = true;
if ( pVMT->FindKey("$translucent") || pVMT->FindKey("$alphatest") )
{
KeyValues *pBaseTexture = pVMT->FindKey("$basetexture");
if ( pBaseTexture )
{
const char *pBaseTextureName = pBaseTexture->GetString();
if ( pBaseTextureName )
{
int w, h;
bool bClampU = false;
bool bClampV = false;
unsigned char *pImageBits = LoadVTFRGB8888( pBaseTextureName, &w, &h, &bClampU, &bClampV );
if ( pImageBits )
{
int index = m_Textures.Insert( pMaterialName );
m_Textures[index].InitFromRGB8888( w, h, pImageBits );
*pIndex = index;
if ( pVMT->FindKey("$nocull") )
{
// UNDONE: Support this? Do we need to emit two triangles?
m_Textures[index].allowBackface = true;
}
m_Textures[index].clampU = bClampU;
m_Textures[index].clampV = bClampV;
delete[] pImageBits;
}
}
}
}
}
pVMT->deleteThis();
}
return bFound;
}
// iterate the textures for the model and load each one into the database
// this is used on models marked to cast texture shadows
void LoadAllTexturesForModel( studiohdr_t *pHdr, int *pTextureList )
{
for ( int i = 0; i < pHdr->numtextures; i++ )
{
int textureIndex = -1;
// try to add each texture to the transparent shadow manager
char szPath[MAX_PATH];
// iterate quietly through all specified directories until a valid material is found
for ( int j = 0; j < pHdr->numcdtextures; j++ )
{
Q_strncpy( szPath, "materials/", sizeof( szPath ) );
Q_strncat( szPath, pHdr->pCdtexture( j ), sizeof( szPath ) );
const char *textureName = pHdr->pTexture( i )->pszName();
Q_strncat( szPath, textureName, sizeof( szPath ), COPY_ALL_CHARACTERS );
Q_strncat( szPath, ".vmt", sizeof( szPath ), COPY_ALL_CHARACTERS );
Q_FixSlashes( szPath, CORRECT_PATH_SEPARATOR );
if ( FindOrLoadIfValid( szPath, &textureIndex ) )
break;
}
pTextureList[i] = textureIndex;
}
}
int AddMaterialEntry( int shadowTextureIndex, const Vector2D &t0, const Vector2D &t1, const Vector2D &t2 )
{
int index = m_MaterialEntries.AddToTail();
m_MaterialEntries[index].textureIndex = shadowTextureIndex;
m_MaterialEntries[index].uv[0] = t0;
m_MaterialEntries[index].uv[1] = t1;
m_MaterialEntries[index].uv[2] = t2;
return index;
}
// HACKHACK: Compute the average coverage for this triangle by sampling the AABB of its texture space
float ComputeCoverageForTriangle( int shadowTextureIndex, const Vector2D &t0, const Vector2D &t1, const Vector2D &t2 )
{
float umin = min(t0.x, t1.x);
umin = min(umin, t2.x);
float umax = max(t0.x, t1.x);
umax = max(umax, t2.x);
float vmin = min(t0.y, t1.y);
vmin = min(vmin, t2.y);
float vmax = max(t0.y, t1.y);
vmax = max(vmax, t2.y);
// UNDONE: Do something about tiling
umin = clamp(umin, 0, 1);
umax = clamp(umax, 0, 1);
vmin = clamp(vmin, 0, 1);
vmax = clamp(vmax, 0, 1);
Assert(umin>=0.0f && umax <= 1.0f);
Assert(vmin>=0.0f && vmax <= 1.0f);
const alphatexture_t &tex = m_Textures.Element(shadowTextureIndex);
int u0 = umin * (tex.width-1);
int u1 = umax * (tex.width-1);
int v0 = vmin * (tex.height-1);
int v1 = vmax * (tex.height-1);
int total = 0;
int count = 0;
for ( int v = v0; v <= v1; v++ )
{
int row = (v * tex.width);
for ( int u = u0; u <= u1; u++ )
{
total += tex.pAlphaTexels[row + u];
count++;
}
}
if ( count )
{
float coverage = float(total) / (count * 255.0f);
return coverage;
}
return 1.0f;
}
int SampleMaterial( int materialIndex, const Vector &coords, bool bBackface )
{
const materialentry_t &mat = m_MaterialEntries[materialIndex];
const alphatexture_t &tex = m_Textures.Element(m_MaterialEntries[materialIndex].textureIndex);
if ( bBackface && !tex.allowBackface )
return 0;
Vector2D uv = coords.x * mat.uv[0] + coords.y * mat.uv[1] + coords.z * mat.uv[2];
int u = RoundFloatToInt( uv[0] * tex.width );
int v = RoundFloatToInt( uv[1] * tex.height );
// asume power of 2, clamp or wrap
// UNDONE: Support clamp? This code should work
#if 0
u = tex.clampU ? clamp(u,0,(tex.width-1)) : (u & (tex.width-1));
v = tex.clampV ? clamp(v,0,(tex.height-1)) : (v & (tex.height-1));
#else
// for now always wrap
u &= (tex.width-1);
v &= (tex.height-1);
#endif
return tex.pAlphaTexels[v * tex.width + u];
}
struct alphatexture_t
{
short width;
short height;
bool allowBackface;
bool clampU;
bool clampV;
unsigned char *pAlphaTexels;
void InitFromRGB8888( int w, int h, unsigned char *pTexels )
{
width = w;
height = h;
pAlphaTexels = new unsigned char[w*h];
for ( int i = 0; i < h; i++ )
{
for ( int j = 0; j < w; j++ )
{
int index = (i*w) + j;
pAlphaTexels[index] = pTexels[index*4 + 3];
}
}
}
};
struct materialentry_t
{
int textureIndex;
Vector2D uv[3];
};
// this is the list of textures we've loaded
// only load each one once
CUtlDict< alphatexture_t, unsigned short > m_Textures;
CUtlVector<materialentry_t> m_MaterialEntries;
};
// global to keep the shadow-casting texture list and their alpha bits
CShadowTextureList g_ShadowTextureList;
float ComputeCoverageFromTexture( float b0, float b1, float b2, int32 hitID )
{
const float alphaScale = 1.0f / 255.0f;
// UNDONE: Pass ray down to determine backfacing?
//Vector normal( tri.m_flNx, tri.m_flNy, tri.m_flNz );
//bool bBackface = DotProduct(delta, tri.N) > 0 ? true : false;
Vector coords(b0,b1,b2);
return alphaScale * g_ShadowTextureList.SampleMaterial( g_RtEnv.GetTriangleMaterial(hitID), coords, false );
}
// this is here to strip models/ or .mdl or whatnot
void CleanModelName( const char *pModelName, char *pOutput, int outLen )
{
// strip off leading models/ if it exists
const char *pModelDir = "models/";
int modelLen = Q_strlen(pModelDir);
if ( !Q_strnicmp(pModelName, pModelDir, modelLen ) )
{
pModelName += modelLen;
}
Q_strncpy( pOutput, pModelName, outLen );
// truncate any .mdl extension
char *dot = strchr(pOutput,'.');
if ( dot )
{
*dot = 0;
}
}
void ForceTextureShadowsOnModel( const char *pModelName )
{
char buf[1024];
CleanModelName( pModelName, buf, sizeof(buf) );
if ( !g_ForcedTextureShadowsModels.Find(buf).IsValid())
{
g_ForcedTextureShadowsModels.AddString(buf);
}
}
bool IsModelTextureShadowsForced( const char *pModelName )
{
char buf[1024];
CleanModelName( pModelName, buf, sizeof(buf) );
return g_ForcedTextureShadowsModels.Find(buf).IsValid();
}
//-----------------------------------------------------------------------------
// Creates a collision model (based on the render geometry!)
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::CreateCollisionModel( char const* pModelName )
{
CUtlBuffer buf;
CUtlBuffer bufvtx;
CUtlBuffer bufphy;
int i = m_StaticPropDict.AddToTail();
m_StaticPropDict[i].m_pModel = NULL;
m_StaticPropDict[i].m_pStudioHdr = NULL;
if ( !LoadStudioModel( pModelName, buf ) )
{
VectorCopy( vec3_origin, m_StaticPropDict[i].m_Mins );
VectorCopy( vec3_origin, m_StaticPropDict[i].m_Maxs );
return;
}
studiohdr_t* pHdr = (studiohdr_t*)buf.Base();
VectorCopy( pHdr->hull_min, m_StaticPropDict[i].m_Mins );
VectorCopy( pHdr->hull_max, m_StaticPropDict[i].m_Maxs );
if ( LoadStudioCollisionModel( pModelName, bufphy ) )
{
phyheader_t header;
bufphy.Get( &header, sizeof(header) );
vcollide_t *pCollide = &m_StaticPropDict[i].m_loadedModel;
s_pPhysCollision->VCollideLoad( pCollide, header.solidCount, (const char *)bufphy.PeekGet(), bufphy.TellPut() - bufphy.TellGet() );
m_StaticPropDict[i].m_pModel = m_StaticPropDict[i].m_loadedModel.solids[0];
/*
static int propNum = 0;
char tmp[128];
sprintf( tmp, "staticprop%03d.txt", propNum );
DumpCollideToGlView( pCollide, tmp );
++propNum;
*/
}
else
{
// mark this as unused
m_StaticPropDict[i].m_loadedModel.solidCount = 0;
// CPhysCollide* pPhys = CreatePhysCollide( pHdr, pVtxHdr );
m_StaticPropDict[i].m_pModel = ComputeConvexHull( pHdr );
}
// clone it
m_StaticPropDict[i].m_pStudioHdr = (studiohdr_t *)malloc( buf.Size() );
memcpy( m_StaticPropDict[i].m_pStudioHdr, (studiohdr_t*)buf.Base(), buf.Size() );
if ( !LoadVTXFile( pModelName, m_StaticPropDict[i].m_pStudioHdr, m_StaticPropDict[i].m_VtxBuf ) )
{
// failed, leave state identified as disabled
m_StaticPropDict[i].m_VtxBuf.Purge();
}
if ( g_bTextureShadows )
{
if ( (pHdr->flags & STUDIOHDR_FLAGS_CAST_TEXTURE_SHADOWS) || IsModelTextureShadowsForced(pModelName) )
{
m_StaticPropDict[i].m_textureShadowIndex.RemoveAll();
m_StaticPropDict[i].m_triangleMaterialIndex.RemoveAll();
m_StaticPropDict[i].m_textureShadowIndex.AddMultipleToTail( pHdr->numtextures );
g_ShadowTextureList.LoadAllTexturesForModel( pHdr, m_StaticPropDict[i].m_textureShadowIndex.Base() );
}
}
}
//-----------------------------------------------------------------------------
// Unserialize static prop model dictionary
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::UnserializeModelDict( CUtlBuffer& buf )
{
int count = buf.GetInt();
while ( --count >= 0 )
{
StaticPropDictLump_t lump;
buf.Get( &lump, sizeof(StaticPropDictLump_t) );
CreateCollisionModel( lump.m_Name );
}
}
void CVradStaticPropMgr::UnserializeModels( CUtlBuffer& buf )
{
int count = buf.GetInt();
m_StaticProps.AddMultipleToTail(count);
for ( int i = 0; i < count; ++i )
{
StaticPropLump_t lump;
buf.Get( &lump, sizeof(StaticPropLump_t) );
VectorCopy( lump.m_Origin, m_StaticProps[i].m_Origin );
VectorCopy( lump.m_Angles, m_StaticProps[i].m_Angles );
VectorCopy( lump.m_LightingOrigin, m_StaticProps[i].m_LightingOrigin );
m_StaticProps[i].m_bLightingOriginValid = ( lump.m_Flags & STATIC_PROP_USE_LIGHTING_ORIGIN ) > 0;
m_StaticProps[i].m_ModelIdx = lump.m_PropType;
m_StaticProps[i].m_Handle = TREEDATA_INVALID_HANDLE;
m_StaticProps[i].m_Flags = lump.m_Flags;
// Changed this from using DXT1 to RGB888 because the compression artifacts were pretty nasty.
// TODO: Consider changing back or basing this on user selection in hammer.
m_StaticProps[i].m_LightmapImageFormat = IMAGE_FORMAT_RGB888;
m_StaticProps[i].m_LightmapImageWidth = lump.m_nLightmapResolutionX;
m_StaticProps[i].m_LightmapImageHeight = lump.m_nLightmapResolutionY;
}
}
//-----------------------------------------------------------------------------
// Unserialize static props
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::UnserializeStaticProps()
{
// Unserialize static props, insert them into the appropriate leaves
GameLumpHandle_t handle = g_GameLumps.GetGameLumpHandle( GAMELUMP_STATIC_PROPS );
int size = g_GameLumps.GameLumpSize( handle );
if (!size)
return;
if ( g_GameLumps.GetGameLumpVersion( handle ) != GAMELUMP_STATIC_PROPS_VERSION )
{
Error( "Cannot load the static props... encountered a stale map version. Re-vbsp the map." );
}
if ( g_GameLumps.GetGameLump( handle ) )
{
CUtlBuffer buf( g_GameLumps.GetGameLump(handle), size, CUtlBuffer::READ_ONLY );
UnserializeModelDict( buf );
// Skip the leaf list data
int count = buf.GetInt();
buf.SeekGet( CUtlBuffer::SEEK_CURRENT, count * sizeof(StaticPropLeafLump_t) );
UnserializeModels( buf );
}
}
//-----------------------------------------------------------------------------
// Level init, shutdown
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::Init()
{
CreateInterfaceFn physicsFactory = GetPhysicsFactory();
if ( !physicsFactory )
Error( "Unable to load vphysics DLL." );
s_pPhysCollision = (IPhysicsCollision *)physicsFactory( VPHYSICS_COLLISION_INTERFACE_VERSION, NULL );
if( !s_pPhysCollision )
{
Error( "Unable to get '%s' for physics interface.", VPHYSICS_COLLISION_INTERFACE_VERSION );
return;
}
// Read in static props that have been compiled into the bsp file
UnserializeStaticProps();
}
void CVradStaticPropMgr::Shutdown()
{
// Remove all static prop model data
for (int i = m_StaticPropDict.Size(); --i >= 0; )
{
studiohdr_t *pStudioHdr = m_StaticPropDict[i].m_pStudioHdr;
if ( pStudioHdr )
{
if ( pStudioHdr->pVertexBase )
{
free( pStudioHdr->pVertexBase );
}
free( pStudioHdr );
}
}
m_StaticProps.Purge();
m_StaticPropDict.Purge();
}
void ComputeLightmapColor( dface_t* pFace, Vector &color )
{
texinfo_t* pTex = &texinfo[pFace->texinfo];
if ( pTex->flags & SURF_SKY )
{
// sky ambient already accounted for in direct component
return;
}
}
bool PositionInSolid( Vector &position )
{
int ndxLeaf = PointLeafnum( position );
if ( dleafs[ndxLeaf].contents & CONTENTS_SOLID )
{
// position embedded in solid
return true;
}
return false;
}
//-----------------------------------------------------------------------------
// Trace from a vertex to each direct light source, accumulating its contribution.
//-----------------------------------------------------------------------------
void ComputeDirectLightingAtPoint( Vector &position, Vector &normal, Vector &outColor, int iThread,
int static_prop_id_to_skip=-1, int nLFlags = 0)
{
SSE_sampleLightOutput_t sampleOutput;
outColor.Init();
// Iterate over all direct lights and accumulate their contribution
int cluster = ClusterFromPoint( position );
for ( directlight_t *dl = activelights; dl != NULL; dl = dl->next )
{
if ( dl->light.style )
{
// skip lights with style
continue;
}
// is this lights cluster visible?
if ( !PVSCheck( dl->pvs, cluster ) )
continue;
// push the vertex towards the light to avoid surface acne
Vector adjusted_pos = position;
float flEpsilon = 0.0;
if (dl->light.type != emit_skyambient)
{
// push towards the light
Vector fudge;
if ( dl->light.type == emit_skylight )
fudge = -( dl->light.normal);
else
{
fudge = dl->light.origin-position;
VectorNormalize( fudge );
}
fudge *= 4.0;
adjusted_pos += fudge;
}
else
{
// push out along normal
adjusted_pos += 4.0 * normal;
// flEpsilon = 1.0;
}
FourVectors adjusted_pos4;
FourVectors normal4;
adjusted_pos4.DuplicateVector( adjusted_pos );
normal4.DuplicateVector( normal );
GatherSampleLightSSE( sampleOutput, dl, -1, adjusted_pos4, &normal4, 1, iThread, nLFlags | GATHERLFLAGS_FORCE_FAST,
static_prop_id_to_skip, flEpsilon );
VectorMA( outColor, sampleOutput.m_flFalloff.m128_f32[0] * sampleOutput.m_flDot[0].m128_f32[0], dl->light.intensity, outColor );
}
}
//-----------------------------------------------------------------------------
// Takes the results from a ComputeLighting call and applies it to the static prop in question.
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::ApplyLightingToStaticProp( int iStaticProp, CStaticProp &prop, const CComputeStaticPropLightingResults *pResults )
{
if ( pResults->m_ColorVertsArrays.Count() == 0 && pResults->m_ColorTexelsArrays.Count() == 0 )
return;
StaticPropDict_t &dict = m_StaticPropDict[prop.m_ModelIdx];
studiohdr_t *pStudioHdr = dict.m_pStudioHdr;
OptimizedModel::FileHeader_t *pVtxHdr = (OptimizedModel::FileHeader_t *)dict.m_VtxBuf.Base();
Assert( pStudioHdr && pVtxHdr );
int iCurColorVertsArray = 0;
int iCurColorTexelsArray = 0;
for ( int bodyID = 0; bodyID < pStudioHdr->numbodyparts; ++bodyID )
{
OptimizedModel::BodyPartHeader_t* pVtxBodyPart = pVtxHdr->pBodyPart( bodyID );
mstudiobodyparts_t *pBodyPart = pStudioHdr->pBodypart( bodyID );
for ( int modelID = 0; modelID < pBodyPart->nummodels; ++modelID )
{
OptimizedModel::ModelHeader_t* pVtxModel = pVtxBodyPart->pModel( modelID );
mstudiomodel_t *pStudioModel = pBodyPart->pModel( modelID );
const CUtlVector<colorVertex_t> *colorVerts = pResults->m_ColorVertsArrays.Count() ? pResults->m_ColorVertsArrays[iCurColorVertsArray++] : nullptr;
const CUtlVector<colorTexel_t> *colorTexels = pResults->m_ColorTexelsArrays.Count() ? pResults->m_ColorTexelsArrays[iCurColorTexelsArray++] : nullptr;
for ( int nLod = 0; nLod < pVtxHdr->numLODs; nLod++ )
{
OptimizedModel::ModelLODHeader_t *pVtxLOD = pVtxModel->pLOD( nLod );
for ( int nMesh = 0; nMesh < pStudioModel->nummeshes; ++nMesh )
{
mstudiomesh_t* pMesh = pStudioModel->pMesh( nMesh );
OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh( nMesh );
for ( int nGroup = 0; nGroup < pVtxMesh->numStripGroups; ++nGroup )
{
OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup( nGroup );
int nMeshIdx = prop.m_MeshData.AddToTail();
if (colorVerts)
{
prop.m_MeshData[nMeshIdx].m_VertexColors.AddMultipleToTail( pStripGroup->numVerts );
prop.m_MeshData[nMeshIdx].m_nLod = nLod;
for ( int nVertex = 0; nVertex < pStripGroup->numVerts; ++nVertex )
{
int nIndex = pMesh->vertexoffset + pStripGroup->pVertex( nVertex )->origMeshVertID;
Assert( nIndex < pStudioModel->numvertices );
prop.m_MeshData[nMeshIdx].m_VertexColors[nVertex] = (*colorVerts)[nIndex].m_Color;
}
}
if (colorTexels)
{
// TODO: Consider doing this work in the worker threads, because then we distribute it.
ConvertTexelDataToTexture(prop.m_LightmapImageWidth, prop.m_LightmapImageHeight, prop.m_LightmapImageFormat, (*colorTexels), &prop.m_MeshData[nMeshIdx].m_TexelsEncoded);
if (g_bDumpPropLightmaps)
{
char buffer[_MAX_PATH];
V_snprintf(
buffer,
_MAX_PATH - 1,
"staticprop_lightmap_%d_%.0f_%.0f_%.0f_%s_%d_%d_%d_%d_%d.tga",
iStaticProp,
prop.m_Origin.x,
prop.m_Origin.y,
prop.m_Origin.z,
dict.m_pStudioHdr->pszName(),
bodyID,
modelID,
nLod,
nMesh,
nGroup
);
for ( int i = 0; buffer[i]; ++i )
{
if (buffer[i] == '/' || buffer[i] == '\\')
buffer[i] = '-';
}
DumpLightmapLinear( buffer, (*colorTexels), prop.m_LightmapImageWidth, prop.m_LightmapImageHeight );
}
}
}
}
}
}
}
}
//-----------------------------------------------------------------------------
// Trace rays from each unique vertex, accumulating direct and indirect
// sources at each ray termination. Use the winding data to distribute the unique vertexes
// into the rendering layout.
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::ComputeLighting( CStaticProp &prop, int iThread, int prop_index, CComputeStaticPropLightingResults *pResults )
{
CUtlVector<badVertex_t> badVerts;
StaticPropDict_t &dict = m_StaticPropDict[prop.m_ModelIdx];
studiohdr_t *pStudioHdr = dict.m_pStudioHdr;
OptimizedModel::FileHeader_t *pVtxHdr = (OptimizedModel::FileHeader_t *)dict.m_VtxBuf.Base();
if ( !pStudioHdr || !pVtxHdr )
{
// must have model and its verts for lighting computation
// game will fallback to fullbright
return;
}
const bool withVertexLighting = (prop.m_Flags & STATIC_PROP_NO_PER_VERTEX_LIGHTING) == 0;
const bool withTexelLighting = (prop.m_Flags & STATIC_PROP_NO_PER_TEXEL_LIGHTING) == 0;
if (!withVertexLighting && !withTexelLighting)
return;
const int skip_prop = (g_bDisablePropSelfShadowing || (prop.m_Flags & STATIC_PROP_NO_SELF_SHADOWING)) ? prop_index : -1;
const int nFlags = ( prop.m_Flags & STATIC_PROP_IGNORE_NORMALS ) ? GATHERLFLAGS_IGNORE_NORMALS : 0;
VMPI_SetCurrentStage( "ComputeLighting" );
matrix3x4_t matPos, matNormal;
AngleMatrix(prop.m_Angles, prop.m_Origin, matPos);
AngleMatrix(prop.m_Angles, matNormal);
for ( int bodyID = 0; bodyID < pStudioHdr->numbodyparts; ++bodyID )
{
OptimizedModel::BodyPartHeader_t* pVtxBodyPart = pVtxHdr->pBodyPart( bodyID );
mstudiobodyparts_t *pBodyPart = pStudioHdr->pBodypart( bodyID );
for ( int modelID = 0; modelID < pBodyPart->nummodels; ++modelID )
{
OptimizedModel::ModelHeader_t* pVtxModel = pVtxBodyPart->pModel(modelID);
mstudiomodel_t *pStudioModel = pBodyPart->pModel( modelID );
if (withTexelLighting)
{
CUtlVector<colorTexel_t> *pColorTexelArray = new CUtlVector<colorTexel_t>;
pResults->m_ColorTexelsArrays.AddToTail(pColorTexelArray);
}
// light all unique vertexes
CUtlVector<colorVertex_t> *pColorVertsArray = new CUtlVector<colorVertex_t>;
pResults->m_ColorVertsArrays.AddToTail( pColorVertsArray );
CUtlVector<colorVertex_t> &colorVerts = *pColorVertsArray;
colorVerts.EnsureCount( pStudioModel->numvertices );
memset( colorVerts.Base(), 0, colorVerts.Count() * sizeof(colorVertex_t) );
int numVertexes = 0;
for ( int meshID = 0; meshID < pStudioModel->nummeshes; ++meshID )
{
mstudiomesh_t *pStudioMesh = pStudioModel->pMesh( meshID );
const mstudio_meshvertexdata_t *vertData = pStudioMesh->GetVertexData((void *)pStudioHdr);
Assert(vertData); // This can only return NULL on X360 for now
// TODO: Move this into its own function. In fact, refactor this whole function.
if (withTexelLighting)
{
GenerateLightmapSamplesForMesh( matPos, matNormal, iThread, skip_prop, nFlags, prop.m_LightmapImageWidth, prop.m_LightmapImageHeight, pStudioHdr, pStudioModel, pVtxModel, meshID, pResults );
}
// If we do lightmapping, we also do vertex lighting as a potential fallback. This may change.
for ( int vertexID = 0; vertexID < pStudioMesh->numvertices; ++vertexID )
{
Vector sampleNormal;
Vector samplePosition;
// transform position and normal into world coordinate system
VectorTransform(*vertData->Position(vertexID), matPos, samplePosition);
VectorTransform(*vertData->Normal(vertexID), matNormal, sampleNormal);
if ( PositionInSolid( samplePosition ) )
{
// vertex is in solid, add to the bad list, and recover later
badVertex_t badVertex;
badVertex.m_ColorVertex = numVertexes;
badVertex.m_Position = samplePosition;
badVertex.m_Normal = sampleNormal;
badVerts.AddToTail( badVertex );
}
else
{
Vector direct_pos=samplePosition;
Vector directColor(0,0,0);
ComputeDirectLightingAtPoint( direct_pos,
sampleNormal, directColor, iThread,
skip_prop, nFlags );
Vector indirectColor(0,0,0);
if (g_bShowStaticPropNormals)
{
directColor= sampleNormal;
directColor += Vector(1.0,1.0,1.0);
directColor *= 50.0;
}
else
{
if (numbounce >= 1)
ComputeIndirectLightingAtPoint(
samplePosition, sampleNormal,
indirectColor, iThread, true,
( prop.m_Flags & STATIC_PROP_IGNORE_NORMALS) != 0 );
}
colorVerts[numVertexes].m_bValid = true;
colorVerts[numVertexes].m_Position = samplePosition;
VectorAdd( directColor, indirectColor, colorVerts[numVertexes].m_Color );
}
numVertexes++;
}
}
// color in the bad vertexes
// when entire model has no lighting origin and no valid neighbors
// must punt, leave black coloring
if ( badVerts.Count() && ( prop.m_bLightingOriginValid || badVerts.Count() != numVertexes ) )
{
for ( int nBadVertex = 0; nBadVertex < badVerts.Count(); nBadVertex++ )
{
Vector bestPosition;
if ( prop.m_bLightingOriginValid )
{
// use the specified lighting origin
VectorCopy( prop.m_LightingOrigin, bestPosition );
}
else
{
// find the closest valid neighbor
int best = 0;
float closest = FLT_MAX;
for ( int nColorVertex = 0; nColorVertex < numVertexes; nColorVertex++ )
{
if ( !colorVerts[nColorVertex].m_bValid )
{
// skip invalid neighbors
continue;
}
Vector delta;
VectorSubtract( colorVerts[nColorVertex].m_Position, badVerts[nBadVertex].m_Position, delta );
float distance = VectorLength( delta );
if ( distance < closest )
{
closest = distance;
best = nColorVertex;
}
}
// use the best neighbor as the direction to crawl
VectorCopy( colorVerts[best].m_Position, bestPosition );
}
// crawl toward best position
// sudivide to determine a closer valid point to the bad vertex, and re-light
Vector midPosition;
int numIterations = 20;
while ( --numIterations > 0 )
{
VectorAdd( bestPosition, badVerts[nBadVertex].m_Position, midPosition );
VectorScale( midPosition, 0.5f, midPosition );
if ( PositionInSolid( midPosition ) )
break;
bestPosition = midPosition;
}
// re-light from better position
Vector directColor;
ComputeDirectLightingAtPoint( bestPosition, badVerts[nBadVertex].m_Normal, directColor, iThread );
Vector indirectColor;
ComputeIndirectLightingAtPoint( bestPosition, badVerts[nBadVertex].m_Normal,
indirectColor, iThread, true );
// save results, not changing valid status
// to ensure this offset position is not considered as a viable candidate
colorVerts[badVerts[nBadVertex].m_ColorVertex].m_Position = bestPosition;
VectorAdd( directColor, indirectColor, colorVerts[badVerts[nBadVertex].m_ColorVertex].m_Color );
}
}
// discard bad verts
badVerts.Purge();
}
}
}
//-----------------------------------------------------------------------------
// Write the lighitng to bsp pak lump
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::SerializeLighting()
{
char filename[MAX_PATH];
CUtlBuffer utlBuf;
// illuminate them all
int count = m_StaticProps.Count();
if ( !count )
{
// nothing to do
return;
}
char mapName[MAX_PATH];
Q_FileBase( source, mapName, sizeof( mapName ) );
int size;
for (int i = 0; i < count; ++i)
{
// no need to write this file if we didn't compute the data
// props marked this way will not load the info anyway
if ( m_StaticProps[i].m_Flags & STATIC_PROP_NO_PER_VERTEX_LIGHTING )
continue;
if (g_bHDR)
{
sprintf( filename, "sp_hdr_%d.vhv", i );
}
else
{
sprintf( filename, "sp_%d.vhv", i );
}
int totalVertexes = 0;
for ( int j=0; j<m_StaticProps[i].m_MeshData.Count(); j++ )
{
totalVertexes += m_StaticProps[i].m_MeshData[j].m_VertexColors.Count();
}
// allocate a buffer with enough padding for alignment
size = sizeof( HardwareVerts::FileHeader_t ) +
m_StaticProps[i].m_MeshData.Count()*sizeof(HardwareVerts::MeshHeader_t) +
totalVertexes*4 + 2*512;
utlBuf.EnsureCapacity( size );
Q_memset( utlBuf.Base(), 0, size );
HardwareVerts::FileHeader_t *pVhvHdr = (HardwareVerts::FileHeader_t *)utlBuf.Base();
// align to start of vertex data
unsigned char *pVertexData = (unsigned char *)(sizeof( HardwareVerts::FileHeader_t ) + m_StaticProps[i].m_MeshData.Count()*sizeof(HardwareVerts::MeshHeader_t));
pVertexData = (unsigned char*)pVhvHdr + ALIGN_TO_POW2( (unsigned int)pVertexData, 512 );
// construct header
pVhvHdr->m_nVersion = VHV_VERSION;
pVhvHdr->m_nChecksum = m_StaticPropDict[m_StaticProps[i].m_ModelIdx].m_pStudioHdr->checksum;
pVhvHdr->m_nVertexFlags = VERTEX_COLOR;
pVhvHdr->m_nVertexSize = 4;
pVhvHdr->m_nVertexes = totalVertexes;
pVhvHdr->m_nMeshes = m_StaticProps[i].m_MeshData.Count();
for (int n=0; n<pVhvHdr->m_nMeshes; n++)
{
// construct mesh dictionary
HardwareVerts::MeshHeader_t *pMesh = pVhvHdr->pMesh( n );
pMesh->m_nLod = m_StaticProps[i].m_MeshData[n].m_nLod;
pMesh->m_nVertexes = m_StaticProps[i].m_MeshData[n].m_VertexColors.Count();
pMesh->m_nOffset = (unsigned int)pVertexData - (unsigned int)pVhvHdr;
// construct vertexes
for (int k=0; k<pMesh->m_nVertexes; k++)
{
Vector &vertexColor = m_StaticProps[i].m_MeshData[n].m_VertexColors[k];
ColorRGBExp32 rgbColor;
VectorToColorRGBExp32( vertexColor, rgbColor );
unsigned char dstColor[4];
ConvertRGBExp32ToRGBA8888( &rgbColor, dstColor );
// b,g,r,a order
pVertexData[0] = dstColor[2];
pVertexData[1] = dstColor[1];
pVertexData[2] = dstColor[0];
pVertexData[3] = dstColor[3];
pVertexData += 4;
}
}
// align to end of file
pVertexData = (unsigned char *)((unsigned int)pVertexData - (unsigned int)pVhvHdr);
pVertexData = (unsigned char*)pVhvHdr + ALIGN_TO_POW2( (unsigned int)pVertexData, 512 );
AddBufferToPak( GetPakFile(), filename, (void*)pVhvHdr, pVertexData - (unsigned char*)pVhvHdr, false );
}
for (int i = 0; i < count; ++i)
{
const int kAlignment = 512;
// no need to write this file if we didn't compute the data
// props marked this way will not load the info anyway
if (m_StaticProps[i].m_Flags & STATIC_PROP_NO_PER_TEXEL_LIGHTING)
continue;
sprintf(filename, "texelslighting_%d.ppl", i);
ImageFormat fmt = m_StaticProps[i].m_LightmapImageFormat;
unsigned int totalTexelSizeBytes = 0;
for (int j = 0; j < m_StaticProps[i].m_MeshData.Count(); j++)
{
totalTexelSizeBytes += m_StaticProps[i].m_MeshData[j].m_TexelsEncoded.Count();
}
// allocate a buffer with enough padding for alignment
size = sizeof(HardwareTexels::FileHeader_t)
+ m_StaticProps[i].m_MeshData.Count() * sizeof(HardwareTexels::MeshHeader_t)
+ totalTexelSizeBytes
+ 2 * kAlignment;
utlBuf.EnsureCapacity(size);
Q_memset(utlBuf.Base(), 0, size);
HardwareTexels::FileHeader_t *pVhtHdr = (HardwareTexels::FileHeader_t *)utlBuf.Base();
// align start of texel data
unsigned char *pTexelData = (unsigned char *)(sizeof(HardwareTexels::FileHeader_t) + m_StaticProps[i].m_MeshData.Count() * sizeof(HardwareTexels::MeshHeader_t));
pTexelData = (unsigned char*)pVhtHdr + ALIGN_TO_POW2((unsigned int)pTexelData, kAlignment);
pVhtHdr->m_nVersion = VHT_VERSION;
pVhtHdr->m_nChecksum = m_StaticPropDict[m_StaticProps[i].m_ModelIdx].m_pStudioHdr->checksum;
pVhtHdr->m_nTexelFormat = fmt;
pVhtHdr->m_nMeshes = m_StaticProps[i].m_MeshData.Count();
for (int n = 0; n < pVhtHdr->m_nMeshes; n++)
{
HardwareTexels::MeshHeader_t *pMesh = pVhtHdr->pMesh(n);
pMesh->m_nLod = m_StaticProps[i].m_MeshData[n].m_nLod;
pMesh->m_nOffset = (unsigned int)pTexelData - (unsigned int)pVhtHdr;
pMesh->m_nBytes = m_StaticProps[i].m_MeshData[n].m_TexelsEncoded.Count();
pMesh->m_nWidth = m_StaticProps[i].m_LightmapImageWidth;
pMesh->m_nHeight = m_StaticProps[i].m_LightmapImageHeight;
Q_memcpy(pTexelData, m_StaticProps[i].m_MeshData[n].m_TexelsEncoded.Base(), m_StaticProps[i].m_MeshData[n].m_TexelsEncoded.Count());
pTexelData += m_StaticProps[i].m_MeshData[n].m_TexelsEncoded.Count();
}
pTexelData = (unsigned char *)((unsigned int)pTexelData - (unsigned int)pVhtHdr);
pTexelData = (unsigned char*)pVhtHdr + ALIGN_TO_POW2((unsigned int)pTexelData, kAlignment);
AddBufferToPak(GetPakFile(), filename, (void*)pVhtHdr, pTexelData - (unsigned char*)pVhtHdr, false);
}
}
void CVradStaticPropMgr::VMPI_ProcessStaticProp_Static( int iThread, uint64 iStaticProp, MessageBuffer *pBuf )
{
g_StaticPropMgr.VMPI_ProcessStaticProp( iThread, iStaticProp, pBuf );
}
void CVradStaticPropMgr::VMPI_ReceiveStaticPropResults_Static( uint64 iStaticProp, MessageBuffer *pBuf, int iWorker )
{
g_StaticPropMgr.VMPI_ReceiveStaticPropResults( iStaticProp, pBuf, iWorker );
}
//-----------------------------------------------------------------------------
// Called on workers to do the computation for a static prop and send
// it to the master.
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::VMPI_ProcessStaticProp( int iThread, int iStaticProp, MessageBuffer *pBuf )
{
// Compute the lighting.
CComputeStaticPropLightingResults results;
ComputeLighting( m_StaticProps[iStaticProp], iThread, iStaticProp, &results );
VMPI_SetCurrentStage( "EncodeLightingResults" );
// Encode the results.
int nLists = results.m_ColorVertsArrays.Count();
pBuf->write( &nLists, sizeof( nLists ) );
for ( int i=0; i < nLists; i++ )
{
CUtlVector<colorVertex_t> &curList = *results.m_ColorVertsArrays[i];
int count = curList.Count();
pBuf->write( &count, sizeof( count ) );
pBuf->write( curList.Base(), curList.Count() * sizeof( colorVertex_t ) );
}
nLists = results.m_ColorTexelsArrays.Count();
pBuf->write(&nLists, sizeof(nLists));
for (int i = 0; i < nLists; i++)
{
CUtlVector<colorTexel_t> &curList = *results.m_ColorTexelsArrays[i];
int count = curList.Count();
pBuf->write(&count, sizeof(count));
pBuf->write(curList.Base(), curList.Count() * sizeof(colorTexel_t));
}
}
//-----------------------------------------------------------------------------
// Called on the master when a worker finishes processing a static prop.
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::VMPI_ReceiveStaticPropResults( int iStaticProp, MessageBuffer *pBuf, int iWorker )
{
// Read in the results.
CComputeStaticPropLightingResults results;
int nLists;
pBuf->read( &nLists, sizeof( nLists ) );
for ( int i=0; i < nLists; i++ )
{
CUtlVector<colorVertex_t> *pList = new CUtlVector<colorVertex_t>;
results.m_ColorVertsArrays.AddToTail( pList );
int count;
pBuf->read( &count, sizeof( count ) );
pList->SetSize( count );
pBuf->read( pList->Base(), count * sizeof( colorVertex_t ) );
}
pBuf->read(&nLists, sizeof(nLists));
for (int i = 0; i < nLists; i++)
{
CUtlVector<colorTexel_t> *pList = new CUtlVector<colorTexel_t>;
results.m_ColorTexelsArrays.AddToTail(pList);
int count;
pBuf->read(&count, sizeof(count));
pList->SetSize(count);
pBuf->read(pList->Base(), count * sizeof(colorTexel_t));
}
// Apply the results.
ApplyLightingToStaticProp( iStaticProp, m_StaticProps[iStaticProp], &results );
}
void CVradStaticPropMgr::ComputeLightingForProp( int iThread, int iStaticProp )
{
// Compute the lighting.
CComputeStaticPropLightingResults results;
ComputeLighting( m_StaticProps[iStaticProp], iThread, iStaticProp, &results );
ApplyLightingToStaticProp( iStaticProp, m_StaticProps[iStaticProp], &results );
}
void CVradStaticPropMgr::ThreadComputeStaticPropLighting( int iThread, void *pUserData )
{
while (1)
{
int j = GetThreadWork ();
if (j == -1)
break;
CComputeStaticPropLightingResults results;
g_StaticPropMgr.ComputeLightingForProp( iThread, j );
}
}
//-----------------------------------------------------------------------------
// Computes lighting for the static props.
// Must be after all other surface lighting has been computed for the indirect sampling.
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::ComputeLighting( int iThread )
{
// illuminate them all
int count = m_StaticProps.Count();
if ( !count )
{
// nothing to do
return;
}
StartPacifier( "Computing static prop lighting : " );
// ensure any traces against us are ignored because we have no inherit lighting contribution
m_bIgnoreStaticPropTrace = true;
if ( g_bUseMPI )
{
// Distribute the work among the workers.
VMPI_SetCurrentStage( "CVradStaticPropMgr::ComputeLighting" );
DistributeWork(
count,
VMPI_DISTRIBUTEWORK_PACKETID,
&CVradStaticPropMgr::VMPI_ProcessStaticProp_Static,
&CVradStaticPropMgr::VMPI_ReceiveStaticPropResults_Static );
}
else
{
RunThreadsOn(count, true, ThreadComputeStaticPropLighting);
}
// restore default
m_bIgnoreStaticPropTrace = false;
// save data to bsp
SerializeLighting();
EndPacifier( true );
}
//-----------------------------------------------------------------------------
// Adds all static prop polys to the ray trace store.
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::AddPolysForRayTrace( void )
{
int count = m_StaticProps.Count();
if ( !count )
{
// nothing to do
return;
}
// Triangle coverage of 1 (full coverage)
Vector fullCoverage;
fullCoverage.x = 1.0f;
for ( int nProp = 0; nProp < count; ++nProp )
{
CStaticProp &prop = m_StaticProps[nProp];
StaticPropDict_t &dict = m_StaticPropDict[prop.m_ModelIdx];
if ( prop.m_Flags & STATIC_PROP_NO_SHADOW )
continue;
// If not using static prop polys, use AABB
if ( !g_bStaticPropPolys )
{
if ( dict.m_pModel )
{
VMatrix xform;
xform.SetupMatrixOrgAngles ( prop.m_Origin, prop.m_Angles );
ICollisionQuery *queryModel = s_pPhysCollision->CreateQueryModel( dict.m_pModel );
for ( int nConvex = 0; nConvex < queryModel->ConvexCount(); ++nConvex )
{
for ( int nTri = 0; nTri < queryModel->TriangleCount( nConvex ); ++nTri )
{
Vector verts[3];
queryModel->GetTriangleVerts( nConvex, nTri, verts );
for ( int nVert = 0; nVert < 3; ++nVert )
verts[nVert] = xform.VMul4x3(verts[nVert]);
g_RtEnv.AddTriangle ( TRACE_ID_STATICPROP | nProp, verts[0], verts[1], verts[2], fullCoverage );
}
}
s_pPhysCollision->DestroyQueryModel( queryModel );
}
else
{
VectorAdd ( dict.m_Mins, prop.m_Origin, prop.m_mins );
VectorAdd ( dict.m_Maxs, prop.m_Origin, prop.m_maxs );
g_RtEnv.AddAxisAlignedRectangularSolid ( TRACE_ID_STATICPROP | nProp, prop.m_mins, prop.m_maxs, fullCoverage );
}
continue;
}
studiohdr_t *pStudioHdr = dict.m_pStudioHdr;
OptimizedModel::FileHeader_t *pVtxHdr = (OptimizedModel::FileHeader_t *)dict.m_VtxBuf.Base();
if ( !pStudioHdr || !pVtxHdr )
{
// must have model and its verts for decoding triangles
return;
}
// only init the triangle table the first time
bool bInitTriangles = dict.m_triangleMaterialIndex.Count() ? false : true;
int triangleIndex = 0;
// meshes are deeply hierarchial, divided between three stores, follow the white rabbit
// body parts -> models -> lod meshes -> strip groups -> strips
// the vertices and indices are pooled, the trick is knowing the offset to determine your indexed base
for ( int bodyID = 0; bodyID < pStudioHdr->numbodyparts; ++bodyID )
{
OptimizedModel::BodyPartHeader_t* pVtxBodyPart = pVtxHdr->pBodyPart( bodyID );
mstudiobodyparts_t *pBodyPart = pStudioHdr->pBodypart( bodyID );
for ( int modelID = 0; modelID < pBodyPart->nummodels; ++modelID )
{
OptimizedModel::ModelHeader_t* pVtxModel = pVtxBodyPart->pModel( modelID );
mstudiomodel_t *pStudioModel = pBodyPart->pModel( modelID );
// assuming lod 0, could iterate if required
int nLod = 0;
OptimizedModel::ModelLODHeader_t *pVtxLOD = pVtxModel->pLOD( nLod );
for ( int nMesh = 0; nMesh < pStudioModel->nummeshes; ++nMesh )
{
// check if this mesh's material is in the no shadow material name list
mstudiomesh_t* pMesh = pStudioModel->pMesh( nMesh );
mstudiotexture_t *pTxtr=pStudioHdr->pTexture(pMesh->material);
//printf("mat idx=%d mat name=%s\n",pMesh->material,pTxtr->pszName());
bool bSkipThisMesh = false;
for(int check=0; check<g_NonShadowCastingMaterialStrings.Count(); check++)
{
if ( Q_stristr( pTxtr->pszName(),
g_NonShadowCastingMaterialStrings[check] ) )
{
//printf("skip mat name=%s\n",pTxtr->pszName());
bSkipThisMesh = true;
break;
}
}
if ( bSkipThisMesh)
continue;
int shadowTextureIndex = -1;
if ( dict.m_textureShadowIndex.Count() )
{
shadowTextureIndex = dict.m_textureShadowIndex[pMesh->material];
}
OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh( nMesh );
const mstudio_meshvertexdata_t *vertData = pMesh->GetVertexData( (void *)pStudioHdr );
Assert( vertData ); // This can only return NULL on X360 for now
for ( int nGroup = 0; nGroup < pVtxMesh->numStripGroups; ++nGroup )
{
OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup( nGroup );
int nStrip;
for ( nStrip = 0; nStrip < pStripGroup->numStrips; nStrip++ )
{
OptimizedModel::StripHeader_t *pStrip = pStripGroup->pStrip( nStrip );
if ( pStrip->flags & OptimizedModel::STRIP_IS_TRILIST )
{
for ( int i = 0; i < pStrip->numIndices; i += 3 )
{
int idx = pStrip->indexOffset + i;
unsigned short i1 = *pStripGroup->pIndex( idx );
unsigned short i2 = *pStripGroup->pIndex( idx + 1 );
unsigned short i3 = *pStripGroup->pIndex( idx + 2 );
int vertex1 = pStripGroup->pVertex( i1 )->origMeshVertID;
int vertex2 = pStripGroup->pVertex( i2 )->origMeshVertID;
int vertex3 = pStripGroup->pVertex( i3 )->origMeshVertID;
// transform position into world coordinate system
matrix3x4_t matrix;
AngleMatrix( prop.m_Angles, prop.m_Origin, matrix );
Vector position1;
Vector position2;
Vector position3;
VectorTransform( *vertData->Position( vertex1 ), matrix, position1 );
VectorTransform( *vertData->Position( vertex2 ), matrix, position2 );
VectorTransform( *vertData->Position( vertex3 ), matrix, position3 );
unsigned short flags = 0;
int materialIndex = -1;
Vector color = vec3_origin;
if ( shadowTextureIndex >= 0 )
{
if ( bInitTriangles )
{
// add texture space and texture index to material database
// now
float coverage = g_ShadowTextureList.ComputeCoverageForTriangle(shadowTextureIndex, *vertData->Texcoord(vertex1), *vertData->Texcoord(vertex2), *vertData->Texcoord(vertex3) );
if ( coverage < 1.0f )
{
materialIndex = g_ShadowTextureList.AddMaterialEntry( shadowTextureIndex, *vertData->Texcoord(vertex1), *vertData->Texcoord(vertex2), *vertData->Texcoord(vertex3) );
color.x = coverage;
}
else
{
materialIndex = -1;
}
dict.m_triangleMaterialIndex.AddToTail(materialIndex);
}
else
{
materialIndex = dict.m_triangleMaterialIndex[triangleIndex];
triangleIndex++;
}
if ( materialIndex >= 0 )
{
flags = FCACHETRI_TRANSPARENT;
}
}
// printf( "\ngl 3\n" );
// printf( "gl %6.3f %6.3f %6.3f 1 0 0\n", XYZ(position1));
// printf( "gl %6.3f %6.3f %6.3f 0 1 0\n", XYZ(position2));
// printf( "gl %6.3f %6.3f %6.3f 0 0 1\n", XYZ(position3));
g_RtEnv.AddTriangle( TRACE_ID_STATICPROP | nProp,
position1, position2, position3,
color, flags, materialIndex);
}
}
else
{
// all tris expected to be discrete tri lists
// must fixme if stripping ever occurs
printf( "unexpected strips found\n" );
Assert( 0 );
return;
}
}
}
}
}
}
}
}
struct tl_tri_t
{
Vector p0;
Vector p1;
Vector p2;
Vector n0;
Vector n1;
Vector n2;
bool operator == (const tl_tri_t &t) const
{
return ( p0 == t.p0 &&
p1 == t.p1 &&
p2 == t.p2 &&
n0 == t.n0 &&
n1 == t.n1 &&
n2 == t.n2 );
}
};
struct tl_vert_t
{
Vector m_position;
CUtlLinkedList< tl_tri_t, int > m_triList;
};
void AddTriVertsToList( CUtlVector< tl_vert_t > &triListVerts, int vertIndex, Vector vertPosition, Vector p0, Vector p1, Vector p2, Vector n0, Vector n1, Vector n2 )
{
tl_tri_t tlTri;
tlTri.p0 = p0;
tlTri.p1 = p1;
tlTri.p2 = p2;
tlTri.n0 = n0;
tlTri.n1 = n1;
tlTri.n2 = n2;
triListVerts.EnsureCapacity( vertIndex+1 );
triListVerts[vertIndex].m_position = vertPosition;
int index = triListVerts[vertIndex].m_triList.Find( tlTri );
if ( !triListVerts[vertIndex].m_triList.IsValidIndex( index ) )
{
// not in list, add to list of triangles
triListVerts[vertIndex].m_triList.AddToTail( tlTri );
}
}
//-----------------------------------------------------------------------------
// Builds a list of tris for every vertex
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::BuildTriList( CStaticProp &prop )
{
// the generated list will consist of a list of verts
// each vert will have a linked list of triangles that it belongs to
CUtlVector< tl_vert_t > triListVerts;
StaticPropDict_t &dict = m_StaticPropDict[prop.m_ModelIdx];
studiohdr_t *pStudioHdr = dict.m_pStudioHdr;
OptimizedModel::FileHeader_t *pVtxHdr = (OptimizedModel::FileHeader_t *)dict.m_VtxBuf.Base();
if ( !pStudioHdr || !pVtxHdr )
{
// must have model and its verts for decoding triangles
return;
}
// meshes are deeply hierarchial, divided between three stores, follow the white rabbit
// body parts -> models -> lod meshes -> strip groups -> strips
// the vertices and indices are pooled, the trick is knowing the offset to determine your indexed base
for ( int bodyID = 0; bodyID < pStudioHdr->numbodyparts; ++bodyID )
{
OptimizedModel::BodyPartHeader_t* pVtxBodyPart = pVtxHdr->pBodyPart( bodyID );
mstudiobodyparts_t *pBodyPart = pStudioHdr->pBodypart( bodyID );
for ( int modelID = 0; modelID < pBodyPart->nummodels; ++modelID )
{
OptimizedModel::ModelHeader_t* pVtxModel = pVtxBodyPart->pModel( modelID );
mstudiomodel_t *pStudioModel = pBodyPart->pModel( modelID );
// get the specified lod, assuming lod 0
int nLod = 0;
OptimizedModel::ModelLODHeader_t *pVtxLOD = pVtxModel->pLOD( nLod );
// must reset because each model has their own vertexes [0..n]
// in order for this to be monolithic for the entire prop the list must be segmented
triListVerts.Purge();
for ( int nMesh = 0; nMesh < pStudioModel->nummeshes; ++nMesh )
{
mstudiomesh_t* pMesh = pStudioModel->pMesh( nMesh );
OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh( nMesh );
const mstudio_meshvertexdata_t *vertData = pMesh->GetVertexData( (void *)pStudioHdr );
Assert( vertData ); // This can only return NULL on X360 for now
for ( int nGroup = 0; nGroup < pVtxMesh->numStripGroups; ++nGroup )
{
OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup( nGroup );
int nStrip;
for ( nStrip = 0; nStrip < pStripGroup->numStrips; nStrip++ )
{
OptimizedModel::StripHeader_t *pStrip = pStripGroup->pStrip( nStrip );
if ( pStrip->flags & OptimizedModel::STRIP_IS_TRILIST )
{
for ( int i = 0; i < pStrip->numIndices; i += 3 )
{
int idx = pStrip->indexOffset + i;
unsigned short i1 = *pStripGroup->pIndex( idx );
unsigned short i2 = *pStripGroup->pIndex( idx + 1 );
unsigned short i3 = *pStripGroup->pIndex( idx + 2 );
int vertex1 = pStripGroup->pVertex( i1 )->origMeshVertID;
int vertex2 = pStripGroup->pVertex( i2 )->origMeshVertID;
int vertex3 = pStripGroup->pVertex( i3 )->origMeshVertID;
// transform position into world coordinate system
matrix3x4_t matrix;
AngleMatrix( prop.m_Angles, prop.m_Origin, matrix );
Vector position1;
Vector position2;
Vector position3;
VectorTransform( *vertData->Position( vertex1 ), matrix, position1 );
VectorTransform( *vertData->Position( vertex2 ), matrix, position2 );
VectorTransform( *vertData->Position( vertex3 ), matrix, position3 );
Vector normal1;
Vector normal2;
Vector normal3;
VectorTransform( *vertData->Normal( vertex1 ), matrix, normal1 );
VectorTransform( *vertData->Normal( vertex2 ), matrix, normal2 );
VectorTransform( *vertData->Normal( vertex3 ), matrix, normal3 );
AddTriVertsToList( triListVerts, pMesh->vertexoffset + vertex1, position1, position1, position2, position3, normal1, normal2, normal3 );
AddTriVertsToList( triListVerts, pMesh->vertexoffset + vertex2, position2, position1, position2, position3, normal1, normal2, normal3 );
AddTriVertsToList( triListVerts, pMesh->vertexoffset + vertex3, position3, position1, position2, position3, normal1, normal2, normal3 );
}
}
else
{
// all tris expected to be discrete tri lists
// must fixme if stripping ever occurs
printf( "unexpected strips found\n" );
Assert( 0 );
return;
}
}
}
}
}
}
}
const vertexFileHeader_t * mstudiomodel_t::CacheVertexData( void *pModelData )
{
studiohdr_t *pActiveStudioHdr = static_cast<studiohdr_t *>(pModelData);
Assert( pActiveStudioHdr );
if ( pActiveStudioHdr->pVertexBase )
{
return (vertexFileHeader_t *)pActiveStudioHdr->pVertexBase;
}
// mandatory callback to make requested data resident
// load and persist the vertex file
char fileName[MAX_PATH];
strcpy( fileName, "models/" );
strcat( fileName, pActiveStudioHdr->pszName() );
Q_StripExtension( fileName, fileName, sizeof( fileName ) );
strcat( fileName, ".vvd" );
// load the model
FileHandle_t fileHandle = g_pFileSystem->Open( fileName, "rb" );
if ( !fileHandle )
{
Error( "Unable to load vertex data \"%s\"\n", fileName );
}
// Get the file size
int vvdSize = g_pFileSystem->Size( fileHandle );
if ( vvdSize == 0 )
{
g_pFileSystem->Close( fileHandle );
Error( "Bad size for vertex data \"%s\"\n", fileName );
}
vertexFileHeader_t *pVvdHdr = (vertexFileHeader_t *)malloc( vvdSize );
g_pFileSystem->Read( pVvdHdr, vvdSize, fileHandle );
g_pFileSystem->Close( fileHandle );
// check header
if ( pVvdHdr->id != MODEL_VERTEX_FILE_ID )
{
Error("Error Vertex File %s id %d should be %d\n", fileName, pVvdHdr->id, MODEL_VERTEX_FILE_ID);
}
if ( pVvdHdr->version != MODEL_VERTEX_FILE_VERSION )
{
Error("Error Vertex File %s version %d should be %d\n", fileName, pVvdHdr->version, MODEL_VERTEX_FILE_VERSION);
}
if ( pVvdHdr->checksum != pActiveStudioHdr->checksum )
{
Error("Error Vertex File %s checksum %d should be %d\n", fileName, pVvdHdr->checksum, pActiveStudioHdr->checksum);
}
// need to perform mesh relocation fixups
// allocate a new copy
vertexFileHeader_t *pNewVvdHdr = (vertexFileHeader_t *)malloc( vvdSize );
if ( !pNewVvdHdr )
{
Error( "Error allocating %d bytes for Vertex File '%s'\n", vvdSize, fileName );
}
// load vertexes and run fixups
Studio_LoadVertexes( pVvdHdr, pNewVvdHdr, 0, true );
// discard original
free( pVvdHdr );
pVvdHdr = pNewVvdHdr;
pActiveStudioHdr->pVertexBase = (void*)pVvdHdr;
return pVvdHdr;
}
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
struct ColorTexelValue
{
Vector mLinearColor; // Linear color value for this texel
bool mValidData; // Whether there is valid data in this texel.
size_t mTriangleIndex; // Which triangle we used to generate the texel.
};
// ------------------------------------------------------------------------------------------------
inline int ComputeLinearPos( int _x, int _y, int _resX, int _resY )
{
return Min( Max( 0, _y ), _resY - 1 ) * _resX
+ Min( Max( 0, _x ), _resX - 1 );
}
// ------------------------------------------------------------------------------------------------
inline float ComputeBarycentricDistanceToTri( Vector _barycentricCoord, Vector2D _v[3] )
{
Vector2D realPos = _barycentricCoord.x * _v[0]
+ _barycentricCoord.y * _v[1]
+ _barycentricCoord.z * _v[2];
int minIndex = 0;
float minVal = _barycentricCoord[0];
for (int i = 1; i < 3; ++i) {
if (_barycentricCoord[i] < minVal) {
minVal = _barycentricCoord[i];
minIndex = i;
}
}
Vector2D& first = _v[ (minIndex + 1) % 3];
Vector2D& second = _v[ (minIndex + 2) % 3];
return CalcDistanceToLineSegment2D( realPos, first, second );
}
// ------------------------------------------------------------------------------------------------
static void GenerateLightmapSamplesForMesh( const matrix3x4_t& _matPos, const matrix3x4_t& _matNormal, int _iThread, int _skipProp, int _flags, int _lightmapResX, int _lightmapResY, studiohdr_t* _pStudioHdr, mstudiomodel_t* _pStudioModel, OptimizedModel::ModelHeader_t* _pVtxModel, int _meshID, CComputeStaticPropLightingResults *_outResults )
{
// Could iterate and gen this if needed.
int nLod = 0;
OptimizedModel::ModelLODHeader_t *pVtxLOD = _pVtxModel->pLOD(nLod);
CUtlVector<colorTexel_t> &colorTexels = (*_outResults->m_ColorTexelsArrays.Tail());
const int cTotalPixelCount = _lightmapResX * _lightmapResY;
colorTexels.EnsureCount(cTotalPixelCount);
memset(colorTexels.Base(), 0, colorTexels.Count() * sizeof(colorTexel_t));
for (int i = 0; i < colorTexels.Count(); ++i) {
colorTexels[i].m_fDistanceToTri = FLT_MAX;
}
mstudiomesh_t* pMesh = _pStudioModel->pMesh(_meshID);
OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh(_meshID);
const mstudio_meshvertexdata_t *vertData = pMesh->GetVertexData((void *)_pStudioHdr);
Assert(vertData); // This can only return NULL on X360 for now
for (int nGroup = 0; nGroup < pVtxMesh->numStripGroups; ++nGroup)
{
OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup(nGroup);
int nStrip;
for (nStrip = 0; nStrip < pStripGroup->numStrips; nStrip++)
{
OptimizedModel::StripHeader_t *pStrip = pStripGroup->pStrip(nStrip);
// If this hits, re-factor the code to iterate over triangles, and build the triangles
// from the underlying structures.
Assert((pStrip->flags & OptimizedModel::STRIP_IS_TRISTRIP) == 0);
if (pStrip->flags & OptimizedModel::STRIP_IS_TRILIST)
{
for (int i = 0; i < pStrip->numIndices; i += 3)
{
int idx = pStrip->indexOffset + i;
unsigned short i1 = *pStripGroup->pIndex(idx);
unsigned short i2 = *pStripGroup->pIndex(idx + 1);
unsigned short i3 = *pStripGroup->pIndex(idx + 2);
int vertex1 = pStripGroup->pVertex(i1)->origMeshVertID;
int vertex2 = pStripGroup->pVertex(i2)->origMeshVertID;
int vertex3 = pStripGroup->pVertex(i3)->origMeshVertID;
Vector modelPos[3] = {
*vertData->Position(vertex1),
*vertData->Position(vertex2),
*vertData->Position(vertex3)
};
Vector modelNormal[3] = {
*vertData->Normal(vertex1),
*vertData->Normal(vertex2),
*vertData->Normal(vertex3)
};
Vector worldPos[3];
Vector worldNormal[3];
VectorTransform(modelPos[0], _matPos, worldPos[0]);
VectorTransform(modelPos[1], _matPos, worldPos[1]);
VectorTransform(modelPos[2], _matPos, worldPos[2]);
VectorTransform(modelNormal[0], _matNormal, worldNormal[0]);
VectorTransform(modelNormal[1], _matNormal, worldNormal[1]);
VectorTransform(modelNormal[2], _matNormal, worldNormal[2]);
Vector2D texcoord[3] = {
*vertData->Texcoord(vertex1),
*vertData->Texcoord(vertex2),
*vertData->Texcoord(vertex3)
};
Rasterizer rasterizer(texcoord[0], texcoord[1], texcoord[2],
_lightmapResX, _lightmapResY);
for (auto it = rasterizer.begin(); it != rasterizer.end(); ++it)
{
size_t linearPos = rasterizer.GetLinearPos(it);
Assert(linearPos < cTotalPixelCount);
if ( colorTexels[linearPos].m_bValid )
{
continue;
}
float ourDistancetoTri = ComputeBarycentricDistanceToTri( it->barycentric, texcoord );
bool doWrite = it->insideTriangle
|| !colorTexels[linearPos].m_bPossiblyInteresting
|| colorTexels[linearPos].m_fDistanceToTri > ourDistancetoTri;
if (doWrite)
{
Vector itWorldPos = worldPos[0] * it->barycentric.x
+ worldPos[1] * it->barycentric.y
+ worldPos[2] * it->barycentric.z;
Vector itWorldNormal = worldNormal[0] * it->barycentric.x
+ worldNormal[1] * it->barycentric.y
+ worldNormal[2] * it->barycentric.z;
itWorldNormal.NormalizeInPlace();
colorTexels[linearPos].m_WorldPosition = itWorldPos;
colorTexels[linearPos].m_WorldNormal = itWorldNormal;
colorTexels[linearPos].m_bValid = it->insideTriangle;
colorTexels[linearPos].m_bPossiblyInteresting = true;
colorTexels[linearPos].m_fDistanceToTri = ourDistancetoTri;
}
}
}
}
}
}
// Process neighbors to the valid region. Walk through the existing array, look for samples that
// are not valid but are adjacent to valid samples. Works if we are only bilinearly sampling
// on the other side.
// First attempt: Just pretend the triangle was larger and cast a ray from this new world pos
// as above.
int linearPos = 0;
for ( int j = 0; j < _lightmapResY; ++j )
{
for (int i = 0; i < _lightmapResX; ++i )
{
bool shouldProcess = colorTexels[linearPos].m_bValid;
// Are any of the eight neighbors valid??
if ( colorTexels[linearPos].m_bPossiblyInteresting )
{
// Look at our neighborhood (3x3 centerd on us).
shouldProcess = shouldProcess
|| colorTexels[ComputeLinearPos( i - 1, j - 1, _lightmapResX, _lightmapResY )].m_bValid // TL
|| colorTexels[ComputeLinearPos( i , j - 1, _lightmapResX, _lightmapResY )].m_bValid // T
|| colorTexels[ComputeLinearPos( i + 1, j - 1, _lightmapResX, _lightmapResY )].m_bValid // TR
|| colorTexels[ComputeLinearPos( i - 1, j , _lightmapResX, _lightmapResY )].m_bValid // L
|| colorTexels[ComputeLinearPos( i + 1, j , _lightmapResX, _lightmapResY )].m_bValid // R
|| colorTexels[ComputeLinearPos( i - 1, j + 1, _lightmapResX, _lightmapResY )].m_bValid // BL
|| colorTexels[ComputeLinearPos( i , j + 1, _lightmapResX, _lightmapResY )].m_bValid // B
|| colorTexels[ComputeLinearPos( i + 1, j + 1, _lightmapResX, _lightmapResY )].m_bValid; // BR
}
if (shouldProcess)
{
Vector directColor(0, 0, 0),
indirectColor(0, 0, 0);
ComputeDirectLightingAtPoint( colorTexels[linearPos].m_WorldPosition, colorTexels[linearPos].m_WorldNormal, directColor, _iThread, _skipProp, _flags);
if (numbounce >= 1) {
ComputeIndirectLightingAtPoint( colorTexels[linearPos].m_WorldPosition, colorTexels[linearPos].m_WorldNormal, indirectColor, _iThread, true, (_flags & GATHERLFLAGS_IGNORE_NORMALS) != 0 );
}
VectorAdd(directColor, indirectColor, colorTexels[linearPos].m_Color);
}
++linearPos;
}
}
}
// ------------------------------------------------------------------------------------------------
static int GetTexelCount(unsigned int _resX, unsigned int _resY, bool _mipmaps)
{
// Because they are unsigned, this is a != check--but if we were to change to ints, this would be
// the right assert (and it's no worse than != now).
Assert(_resX > 0 && _resY > 0);
if (_mipmaps == false)
return _resX * _resY;
int retVal = 0;
while (_resX > 1 || _resY > 1)
{
retVal += _resX * _resY;
_resX = max(1, _resX >> 1);
_resY = max(1, _resY >> 1);
}
// Add in the 1x1 mipmap level, which wasn't hit above. This could be done in the initializer of
// retVal, but it's more obvious here.
retVal += 1;
return retVal;
}
// ------------------------------------------------------------------------------------------------
static void FilterFineMipmap(unsigned int _resX, unsigned int _resY, const CUtlVector<colorTexel_t>& _srcTexels, CUtlVector<Vector>* _outLinear)
{
Assert(_outLinear);
// We can't filter in place, so go ahead and create a linear buffer here.
CUtlVector<Vector> filterSrc;
filterSrc.EnsureCount(_srcTexels.Count());
for (int i = 0; i < _srcTexels.Count(); ++i)
{
ColorRGBExp32 rgbColor;
VectorToColorRGBExp32(_srcTexels[i].m_Color, rgbColor);
ConvertRGBExp32ToLinear( &rgbColor, &(filterSrc[i]) );
}
const int cRadius = 1;
const float cOneOverDiameter = 1.0f / pow(2.0f * cRadius + 1.0f, 2.0f) ;
// Filter here.
for (int j = 0; j < _resY; ++j)
{
for (int i = 0; i < _resX; ++i)
{
Vector value(0, 0, 0);
int thisIndex = ComputeLinearPos(i, j, _resX, _resY);
if (!_srcTexels[thisIndex].m_bValid)
{
(*_outLinear)[thisIndex] = filterSrc[thisIndex];
continue;
}
// TODO: Check ASM for this, unroll by hand if needed.
for ( int offsetJ = -cRadius; offsetJ <= cRadius; ++offsetJ )
{
for ( int offsetI = -cRadius; offsetI <= cRadius; ++offsetI )
{
int finalIndex = ComputeLinearPos( i + offsetI, j + offsetJ, _resX, _resY );
if ( !_srcTexels[finalIndex].m_bValid )
{
finalIndex = thisIndex;
}
value += filterSrc[finalIndex];
}
}
(*_outLinear)[thisIndex] = value * cOneOverDiameter;
}
}
}
// ------------------------------------------------------------------------------------------------
static void BuildFineMipmap(unsigned int _resX, unsigned int _resY, bool _applyFilter, const CUtlVector<colorTexel_t>& _srcTexels, CUtlVector<RGB888_t>* _outTexelsRGB888, CUtlVector<Vector>* _outLinear)
{
// At least one of these needs to be non-null, otherwise what are we doing here?
Assert(_outTexelsRGB888 || _outLinear);
Assert(!_applyFilter || _outLinear);
Assert(_srcTexels.Count() == GetTexelCount(_resX, _resY, false));
int texelCount = GetTexelCount(_resX, _resY, true);
if (_outTexelsRGB888)
(*_outTexelsRGB888).EnsureCount(texelCount);
if (_outLinear)
(*_outLinear).EnsureCount(GetTexelCount(_resX, _resY, false));
// This code can take awhile, so minimize the branchiness of the inner-loop.
if (_applyFilter)
{
FilterFineMipmap(_resX, _resY, _srcTexels, _outLinear);
if ( _outTexelsRGB888 )
{
for (int i = 0; i < _srcTexels.Count(); ++i)
{
RGBA8888_t encodedColor;
Vector linearColor = (*_outLinear)[i];
ConvertLinearToRGBA8888( &linearColor, (unsigned char*)&encodedColor );
(*_outTexelsRGB888)[i].r = encodedColor.r;
(*_outTexelsRGB888)[i].g = encodedColor.g;
(*_outTexelsRGB888)[i].b = encodedColor.b;
}
}
}
else
{
for (int i = 0; i < _srcTexels.Count(); ++i)
{
ColorRGBExp32 rgbColor;
RGBA8888_t encodedColor;
VectorToColorRGBExp32(_srcTexels[i].m_Color, rgbColor);
ConvertRGBExp32ToRGBA8888(&rgbColor, (unsigned char*)&encodedColor, (_outLinear ? (&(*_outLinear)[i]) : NULL) );
// We drop alpha on the floor here, if this were to fire we'd need to consider using a different compressed format.
Assert(encodedColor.a == 0xFF);
if (_outTexelsRGB888)
{
(*_outTexelsRGB888)[i].r = encodedColor.r;
(*_outTexelsRGB888)[i].g = encodedColor.g;
(*_outTexelsRGB888)[i].b = encodedColor.b;
}
}
}
}
// ------------------------------------------------------------------------------------------------
static void FilterCoarserMipmaps(unsigned int _resX, unsigned int _resY, CUtlVector<Vector>* _scratchLinear, CUtlVector<RGB888_t> *_outTexelsRGB888)
{
Assert(_outTexelsRGB888);
int srcResX = _resX;
int srcResY = _resY;
int dstResX = max(1, (srcResX >> 1));
int dstResY = max(1, (srcResY >> 1));
int dstOffset = GetTexelCount(srcResX, srcResY, false);
// Build mipmaps here, after being converted to linear space.
// TODO: Should do better filtering for downsampling. But this will work for now.
while (srcResX > 1 || srcResY > 1)
{
for (int j = 0; j < srcResY; j += 2) {
for (int i = 0; i < srcResX; i += 2) {
int srcCol0 = i;
int srcCol1 = i + 1 > srcResX - 1 ? srcResX - 1 : i + 1;
int srcRow0 = j;
int srcRow1 = j + 1 > srcResY - 1 ? srcResY - 1 : j + 1;;
int dstCol = i >> 1;
int dstRow = j >> 1;
const Vector& tl = (*_scratchLinear)[srcCol0 + (srcRow0 * srcResX)];
const Vector& tr = (*_scratchLinear)[srcCol1 + (srcRow0 * srcResX)];
const Vector& bl = (*_scratchLinear)[srcCol0 + (srcRow1 * srcResX)];
const Vector& br = (*_scratchLinear)[srcCol1 + (srcRow1 * srcResX)];
Vector sample = (tl + tr + bl + br) / 4.0f;
ConvertLinearToRGBA8888(&sample, (unsigned char*)&(*_outTexelsRGB888)[dstOffset + dstCol + dstRow * dstResX]);
// Also overwrite the srcBuffer to filter the next loop. This is safe because we won't be reading this source value
// again during this mipmap level.
(*_scratchLinear)[dstCol + dstRow * dstResX] = sample;
}
}
srcResX = dstResX;
srcResY = dstResY;
dstResX = max(1, (srcResX >> 1));
dstResY = max(1, (srcResY >> 1));
dstOffset += GetTexelCount(srcResX, srcResY, false);
}
}
// ------------------------------------------------------------------------------------------------
static void ConvertToDestinationFormat(unsigned int _resX, unsigned int _resY, ImageFormat _destFmt, const CUtlVector<RGB888_t>& _scratchRBG888, CUtlMemory<byte>* _outTexture)
{
const ImageFormat cSrcImageFormat = IMAGE_FORMAT_RGB888;
// Converts from the scratch RGB888 buffer, which should be fully filled out to the output texture.
int destMemoryUsage = ImageLoader::GetMemRequired(_resX, _resY, 1, _destFmt, true);
(*_outTexture).EnsureCapacity(destMemoryUsage);
int srcResX = _resX;
int srcResY = _resY;
int srcOffset = 0;
int dstOffset = 0;
// The usual case--that they'll be different.
if (cSrcImageFormat != _destFmt)
{
while (srcResX > 1 || srcResY > 1)
{
// Convert this mipmap level.
ImageLoader::ConvertImageFormat((unsigned char*)(&_scratchRBG888[srcOffset]), cSrcImageFormat, (*_outTexture).Base() + dstOffset, _destFmt, srcResX, srcResY);
// Then update offsets for the next mipmap level.
srcOffset += GetTexelCount(srcResX, srcResY, false);
dstOffset += ImageLoader::GetMemRequired(srcResX, srcResY, 1, _destFmt, false);
srcResX = max(1, (srcResX >> 1));
srcResY = max(1, (srcResY >> 1));
}
// Do the 1x1 level also.
ImageLoader::ConvertImageFormat((unsigned char*)_scratchRBG888.Base() + srcOffset, cSrcImageFormat, (*_outTexture).Base() + dstOffset, _destFmt, srcResX, srcResY);
} else {
// But sometimes (particularly for debugging) they will be the same.
Q_memcpy( (*_outTexture).Base(), _scratchRBG888.Base(), destMemoryUsage );
}
}
// ------------------------------------------------------------------------------------------------
static void ConvertTexelDataToTexture(unsigned int _resX, unsigned int _resY, ImageFormat _destFmt, const CUtlVector<colorTexel_t>& _srcTexels, CUtlMemory<byte>* _outTexture)
{
Assert(_outTexture);
Assert(_srcTexels.Count() == _resX * _resY);
CUtlVector<RGB888_t> scratchRGB888;
CUtlVector<Vector> scratchLinear;
BuildFineMipmap(_resX, _resY, true, _srcTexels, &scratchRGB888, &scratchLinear);
FilterCoarserMipmaps(_resX, _resY, &scratchLinear, &scratchRGB888 );
ConvertToDestinationFormat(_resX, _resY, _destFmt, scratchRGB888, _outTexture);
}
// ------------------------------------------------------------------------------------------------
static void DumpLightmapLinear( const char* _dstFilename, const CUtlVector<colorTexel_t>& _srcTexels, int _width, int _height )
{
CUtlVector< Vector > linearFloats;
CUtlVector< BGR888_t > linearBuffer;
BuildFineMipmap( _width, _height, true, _srcTexels, NULL, &linearFloats );
linearBuffer.SetCount( linearFloats.Count() );
for ( int i = 0; i < linearFloats.Count(); ++i ) {
linearBuffer[i].b = RoundFloatToByte(linearFloats[i].z * 255.0f);
linearBuffer[i].g = RoundFloatToByte(linearFloats[i].y * 255.0f);
linearBuffer[i].r = RoundFloatToByte(linearFloats[i].x * 255.0f);
}
TGAWriter::WriteTGAFile( _dstFilename, _width, _height, IMAGE_FORMAT_BGR888, (uint8*)(linearBuffer.Base()), _width * ImageLoader::SizeInBytes(IMAGE_FORMAT_BGR888) );
}