css_enhanced_waf/thirdparty/openssl/crypto/sha/asm/sha1-sparcv9a.pl

602 lines
16 KiB
Perl
Raw Normal View History

2020-10-22 19:43:01 +02:00
#!/usr/bin/env perl
# ====================================================================
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# January 2009
#
# Provided that UltraSPARC VIS instructions are pipe-lined(*) and
# pairable(*) with IALU ones, offloading of Xupdate to the UltraSPARC
# Graphic Unit would make it possible to achieve higher instruction-
# level parallelism, ILP, and thus higher performance. It should be
# explicitly noted that ILP is the keyword, and it means that this
# code would be unsuitable for cores like UltraSPARC-Tx. The idea is
# not really novel, Sun had VIS-powered implementation for a while.
# Unlike Sun's implementation this one can process multiple unaligned
# input blocks, and as such works as drop-in replacement for OpenSSL
# sha1_block_data_order. Performance improvement was measured to be
# 40% over pure IALU sha1-sparcv9.pl on UltraSPARC-IIi, but 12% on
# UltraSPARC-III. See below for discussion...
#
# The module does not present direct interest for OpenSSL, because
# it doesn't provide better performance on contemporary SPARCv9 CPUs,
# UltraSPARC-Tx and SPARC64-V[II] to be specific. Those who feel they
# absolutely must score on UltraSPARC-I-IV can simply replace
# crypto/sha/asm/sha1-sparcv9.pl with this module.
#
# (*) "Pipe-lined" means that even if it takes several cycles to
# complete, next instruction using same functional unit [but not
# depending on the result of the current instruction] can start
# execution without having to wait for the unit. "Pairable"
# means that two [or more] independent instructions can be
# issued at the very same time.
$bits=32;
for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); }
if ($bits==64) { $bias=2047; $frame=192; }
else { $bias=0; $frame=112; }
$output=shift;
open STDOUT,">$output";
$ctx="%i0";
$inp="%i1";
$len="%i2";
$tmp0="%i3";
$tmp1="%i4";
$tmp2="%i5";
$tmp3="%g5";
$base="%g1";
$align="%g4";
$Xfer="%o5";
$nXfer=$tmp3;
$Xi="%o7";
$A="%l0";
$B="%l1";
$C="%l2";
$D="%l3";
$E="%l4";
@V=($A,$B,$C,$D,$E);
$Actx="%o0";
$Bctx="%o1";
$Cctx="%o2";
$Dctx="%o3";
$Ectx="%o4";
$fmul="%f32";
$VK_00_19="%f34";
$VK_20_39="%f36";
$VK_40_59="%f38";
$VK_60_79="%f40";
@VK=($VK_00_19,$VK_20_39,$VK_40_59,$VK_60_79);
@X=("%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",
"%f8", "%f9","%f10","%f11","%f12","%f13","%f14","%f15","%f16");
# This is reference 2x-parallelized VIS-powered Xupdate procedure. It
# covers even K_NN_MM addition...
sub Xupdate {
my ($i)=@_;
my $K=@VK[($i+16)/20];
my $j=($i+16)%16;
# [ provided that GSR.alignaddr_offset is 5, $mul contains
# 0x100ULL<<32|0x100 value and K_NN_MM are pre-loaded to
# chosen registers... ]
$code.=<<___;
fxors @X[($j+13)%16],@X[$j],@X[$j] !-1/-1/-1:X[0]^=X[13]
fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
![fxors %f15,%f2,%f2]
for %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
![fxors %f0,%f3,%f3] !10/17/12:X[0] dependency
fpadd32 $K,@X[$j],%f20
std %f20,[$Xfer+`4*$j`]
___
# The numbers delimited with slash are the earliest possible dispatch
# cycles for given instruction assuming 1 cycle latency for simple VIS
# instructions, such as on UltraSPARC-I&II, 3 cycles latency, such as
# on UltraSPARC-III&IV, and 2 cycles latency(*), respectively. Being
# 2x-parallelized the procedure is "worth" 5, 8.5 or 6 ticks per SHA1
# round. As [long as] FPU/VIS instructions are perfectly pairable with
# IALU ones, the round timing is defined by the maximum between VIS
# and IALU timings. The latter varies from round to round and averages
# out at 6.25 ticks. This means that USI&II should operate at IALU
# rate, while USIII&IV - at VIS rate. This explains why performance
# improvement varies among processors. Well, given that pure IALU
# sha1-sparcv9.pl module exhibits virtually uniform performance of
# ~9.3 cycles per SHA1 round. Timings mentioned above are theoretical
# lower limits. Real-life performance was measured to be 6.6 cycles
# per SHA1 round on USIIi and 8.3 on USIII. The latter is lower than
# half-round VIS timing, because there are 16 Xupdate-free rounds,
# which "push down" average theoretical timing to 8 cycles...
# (*) SPARC64-V[II] was originally believed to have 2 cycles VIS
# latency. Well, it might have, but it doesn't have dedicated
# VIS-unit. Instead, VIS instructions are executed by other
# functional units, ones used here - by IALU. This doesn't
# improve effective ILP...
}
# The reference Xupdate procedure is then "strained" over *pairs* of
# BODY_NN_MM and kind of modulo-scheduled in respect to X[n]^=X[n+13]
# and K_NN_MM addition. It's "running" 15 rounds ahead, which leaves
# plenty of room to amortize for read-after-write hazard, as well as
# to fetch and align input for the next spin. The VIS instructions are
# scheduled for latency of 2 cycles, because there are not enough IALU
# instructions to schedule for latency of 3, while scheduling for 1
# would give no gain on USI&II anyway.
sub BODY_00_19 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $j=$i&~1;
my $k=($j+16+2)%16; # ahead reference
my $l=($j+16-2)%16; # behind reference
my $K=@VK[($j+16-2)/20];
$j=($j+16)%16;
$code.=<<___ if (!($i&1));
sll $a,5,$tmp0 !! $i
and $c,$b,$tmp3
ld [$Xfer+`4*($i%16)`],$Xi
fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
srl $a,27,$tmp1
add $tmp0,$e,$e
fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
sll $b,30,$tmp2
add $tmp1,$e,$e
andn $d,$b,$tmp1
add $Xi,$e,$e
fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
srl $b,2,$b
or $tmp1,$tmp3,$tmp1
or $tmp2,$b,$b
add $tmp1,$e,$e
faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
___
$code.=<<___ if ($i&1);
sll $a,5,$tmp0 !! $i
and $c,$b,$tmp3
ld [$Xfer+`4*($i%16)`],$Xi
fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
srl $a,27,$tmp1
add $tmp0,$e,$e
fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
sll $b,30,$tmp2
add $tmp1,$e,$e
fpadd32 $K,@X[$l],%f20 !
andn $d,$b,$tmp1
add $Xi,$e,$e
fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13]
srl $b,2,$b
or $tmp1,$tmp3,$tmp1
fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
or $tmp2,$b,$b
add $tmp1,$e,$e
___
$code.=<<___ if ($i&1 && $i>=2);
std %f20,[$Xfer+`4*$l`] !
___
}
sub BODY_20_39 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $j=$i&~1;
my $k=($j+16+2)%16; # ahead reference
my $l=($j+16-2)%16; # behind reference
my $K=@VK[($j+16-2)/20];
$j=($j+16)%16;
$code.=<<___ if (!($i&1) && $i<64);
sll $a,5,$tmp0 !! $i
ld [$Xfer+`4*($i%16)`],$Xi
fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
srl $a,27,$tmp1
add $tmp0,$e,$e
fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
xor $c,$b,$tmp0
add $tmp1,$e,$e
sll $b,30,$tmp2
xor $d,$tmp0,$tmp1
fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
srl $b,2,$b
add $tmp1,$e,$e
or $tmp2,$b,$b
add $Xi,$e,$e
faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
___
$code.=<<___ if ($i&1 && $i<64);
sll $a,5,$tmp0 !! $i
ld [$Xfer+`4*($i%16)`],$Xi
fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
srl $a,27,$tmp1
add $tmp0,$e,$e
fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
xor $c,$b,$tmp0
add $tmp1,$e,$e
fpadd32 $K,@X[$l],%f20 !
sll $b,30,$tmp2
xor $d,$tmp0,$tmp1
fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13]
srl $b,2,$b
add $tmp1,$e,$e
fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
or $tmp2,$b,$b
add $Xi,$e,$e
std %f20,[$Xfer+`4*$l`] !
___
$code.=<<___ if ($i==64);
sll $a,5,$tmp0 !! $i
ld [$Xfer+`4*($i%16)`],$Xi
fpadd32 $K,@X[$l],%f20
srl $a,27,$tmp1
add $tmp0,$e,$e
xor $c,$b,$tmp0
add $tmp1,$e,$e
sll $b,30,$tmp2
xor $d,$tmp0,$tmp1
std %f20,[$Xfer+`4*$l`]
srl $b,2,$b
add $tmp1,$e,$e
or $tmp2,$b,$b
add $Xi,$e,$e
___
$code.=<<___ if ($i>64);
sll $a,5,$tmp0 !! $i
ld [$Xfer+`4*($i%16)`],$Xi
srl $a,27,$tmp1
add $tmp0,$e,$e
xor $c,$b,$tmp0
add $tmp1,$e,$e
sll $b,30,$tmp2
xor $d,$tmp0,$tmp1
srl $b,2,$b
add $tmp1,$e,$e
or $tmp2,$b,$b
add $Xi,$e,$e
___
}
sub BODY_40_59 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $j=$i&~1;
my $k=($j+16+2)%16; # ahead reference
my $l=($j+16-2)%16; # behind reference
my $K=@VK[($j+16-2)/20];
$j=($j+16)%16;
$code.=<<___ if (!($i&1));
sll $a,5,$tmp0 !! $i
ld [$Xfer+`4*($i%16)`],$Xi
fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
srl $a,27,$tmp1
add $tmp0,$e,$e
fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
and $c,$b,$tmp0
add $tmp1,$e,$e
sll $b,30,$tmp2
or $c,$b,$tmp1
fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
srl $b,2,$b
and $d,$tmp1,$tmp1
add $Xi,$e,$e
or $tmp1,$tmp0,$tmp1
faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
or $tmp2,$b,$b
add $tmp1,$e,$e
fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
___
$code.=<<___ if ($i&1);
sll $a,5,$tmp0 !! $i
ld [$Xfer+`4*($i%16)`],$Xi
srl $a,27,$tmp1
add $tmp0,$e,$e
fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
and $c,$b,$tmp0
add $tmp1,$e,$e
fpadd32 $K,@X[$l],%f20 !
sll $b,30,$tmp2
or $c,$b,$tmp1
fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13]
srl $b,2,$b
and $d,$tmp1,$tmp1
fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
add $Xi,$e,$e
or $tmp1,$tmp0,$tmp1
or $tmp2,$b,$b
add $tmp1,$e,$e
std %f20,[$Xfer+`4*$l`] !
___
}
# If there is more data to process, then we pre-fetch the data for
# next iteration in last ten rounds...
sub BODY_70_79 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $j=$i&~1;
my $m=($i%8)*2;
$j=($j+16)%16;
$code.=<<___ if ($i==70);
sll $a,5,$tmp0 !! $i
ld [$Xfer+`4*($i%16)`],$Xi
srl $a,27,$tmp1
add $tmp0,$e,$e
ldd [$inp+64],@X[0]
xor $c,$b,$tmp0
add $tmp1,$e,$e
sll $b,30,$tmp2
xor $d,$tmp0,$tmp1
srl $b,2,$b
add $tmp1,$e,$e
or $tmp2,$b,$b
add $Xi,$e,$e
and $inp,-64,$nXfer
inc 64,$inp
and $nXfer,255,$nXfer
alignaddr %g0,$align,%g0
add $base,$nXfer,$nXfer
___
$code.=<<___ if ($i==71);
sll $a,5,$tmp0 !! $i
ld [$Xfer+`4*($i%16)`],$Xi
srl $a,27,$tmp1
add $tmp0,$e,$e
xor $c,$b,$tmp0
add $tmp1,$e,$e
sll $b,30,$tmp2
xor $d,$tmp0,$tmp1
srl $b,2,$b
add $tmp1,$e,$e
or $tmp2,$b,$b
add $Xi,$e,$e
___
$code.=<<___ if ($i>=72);
faligndata @X[$m],@X[$m+2],@X[$m]
sll $a,5,$tmp0 !! $i
ld [$Xfer+`4*($i%16)`],$Xi
srl $a,27,$tmp1
add $tmp0,$e,$e
xor $c,$b,$tmp0
add $tmp1,$e,$e
fpadd32 $VK_00_19,@X[$m],%f20
sll $b,30,$tmp2
xor $d,$tmp0,$tmp1
srl $b,2,$b
add $tmp1,$e,$e
or $tmp2,$b,$b
add $Xi,$e,$e
___
$code.=<<___ if ($i<77);
ldd [$inp+`8*($i+1-70)`],@X[2*($i+1-70)]
___
$code.=<<___ if ($i==77); # redundant if $inp was aligned
add $align,63,$tmp0
and $tmp0,-8,$tmp0
ldd [$inp+$tmp0],@X[16]
___
$code.=<<___ if ($i>=72);
std %f20,[$nXfer+`4*$m`]
___
}
$code.=<<___;
.section ".text",#alloc,#execinstr
.align 64
vis_const:
.long 0x5a827999,0x5a827999 ! K_00_19
.long 0x6ed9eba1,0x6ed9eba1 ! K_20_39
.long 0x8f1bbcdc,0x8f1bbcdc ! K_40_59
.long 0xca62c1d6,0xca62c1d6 ! K_60_79
.long 0x00000100,0x00000100
.align 64
.type vis_const,#object
.size vis_const,(.-vis_const)
.globl sha1_block_data_order
sha1_block_data_order:
save %sp,-$frame,%sp
add %fp,$bias-256,$base
1: call .+8
add %o7,vis_const-1b,$tmp0
ldd [$tmp0+0],$VK_00_19
ldd [$tmp0+8],$VK_20_39
ldd [$tmp0+16],$VK_40_59
ldd [$tmp0+24],$VK_60_79
ldd [$tmp0+32],$fmul
ld [$ctx+0],$Actx
and $base,-256,$base
ld [$ctx+4],$Bctx
sub $base,$bias+$frame,%sp
ld [$ctx+8],$Cctx
and $inp,7,$align
ld [$ctx+12],$Dctx
and $inp,-8,$inp
ld [$ctx+16],$Ectx
! X[16] is maintained in FP register bank
alignaddr %g0,$align,%g0
ldd [$inp+0],@X[0]
sub $inp,-64,$Xfer
ldd [$inp+8],@X[2]
and $Xfer,-64,$Xfer
ldd [$inp+16],@X[4]
and $Xfer,255,$Xfer
ldd [$inp+24],@X[6]
add $base,$Xfer,$Xfer
ldd [$inp+32],@X[8]
ldd [$inp+40],@X[10]
ldd [$inp+48],@X[12]
brz,pt $align,.Laligned
ldd [$inp+56],@X[14]
ldd [$inp+64],@X[16]
faligndata @X[0],@X[2],@X[0]
faligndata @X[2],@X[4],@X[2]
faligndata @X[4],@X[6],@X[4]
faligndata @X[6],@X[8],@X[6]
faligndata @X[8],@X[10],@X[8]
faligndata @X[10],@X[12],@X[10]
faligndata @X[12],@X[14],@X[12]
faligndata @X[14],@X[16],@X[14]
.Laligned:
mov 5,$tmp0
dec 1,$len
alignaddr %g0,$tmp0,%g0
fpadd32 $VK_00_19,@X[0],%f16
fpadd32 $VK_00_19,@X[2],%f18
fpadd32 $VK_00_19,@X[4],%f20
fpadd32 $VK_00_19,@X[6],%f22
fpadd32 $VK_00_19,@X[8],%f24
fpadd32 $VK_00_19,@X[10],%f26
fpadd32 $VK_00_19,@X[12],%f28
fpadd32 $VK_00_19,@X[14],%f30
std %f16,[$Xfer+0]
mov $Actx,$A
std %f18,[$Xfer+8]
mov $Bctx,$B
std %f20,[$Xfer+16]
mov $Cctx,$C
std %f22,[$Xfer+24]
mov $Dctx,$D
std %f24,[$Xfer+32]
mov $Ectx,$E
std %f26,[$Xfer+40]
fxors @X[13],@X[0],@X[0]
std %f28,[$Xfer+48]
ba .Loop
std %f30,[$Xfer+56]
.align 32
.Loop:
___
for ($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); }
for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
for (;$i<70;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
tst $len
bz,pn `$bits==32?"%icc":"%xcc"`,.Ltail
nop
___
for (;$i<80;$i++) { &BODY_70_79($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
add $A,$Actx,$Actx
add $B,$Bctx,$Bctx
add $C,$Cctx,$Cctx
add $D,$Dctx,$Dctx
add $E,$Ectx,$Ectx
mov 5,$tmp0
fxors @X[13],@X[0],@X[0]
mov $Actx,$A
mov $Bctx,$B
mov $Cctx,$C
mov $Dctx,$D
mov $Ectx,$E
alignaddr %g0,$tmp0,%g0
dec 1,$len
ba .Loop
mov $nXfer,$Xfer
.align 32
.Ltail:
___
for($i=70;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
add $A,$Actx,$Actx
add $B,$Bctx,$Bctx
add $C,$Cctx,$Cctx
add $D,$Dctx,$Dctx
add $E,$Ectx,$Ectx
st $Actx,[$ctx+0]
st $Bctx,[$ctx+4]
st $Cctx,[$ctx+8]
st $Dctx,[$ctx+12]
st $Ectx,[$ctx+16]
ret
restore
.type sha1_block_data_order,#function
.size sha1_block_data_order,(.-sha1_block_data_order)
.asciz "SHA1 block transform for SPARCv9a, CRYPTOGAMS by <appro\@openssl.org>"
.align 4
___
# Purpose of these subroutines is to explicitly encode VIS instructions,
# so that one can compile the module without having to specify VIS
# extentions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
# Idea is to reserve for option to produce "universal" binary and let
# programmer detect if current CPU is VIS capable at run-time.
sub unvis {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my ($ref,$opf);
my %visopf = ( "fmul8ulx16" => 0x037,
"faligndata" => 0x048,
"fpadd32" => 0x052,
"fxor" => 0x06c,
"fxors" => 0x06d );
$ref = "$mnemonic\t$rs1,$rs2,$rd";
if ($opf=$visopf{$mnemonic}) {
foreach ($rs1,$rs2,$rd) {
return $ref if (!/%f([0-9]{1,2})/);
$_=$1;
if ($1>=32) {
return $ref if ($1&1);
# re-encode for upper double register addressing
$_=($1|$1>>5)&31;
}
}
return sprintf ".word\t0x%08x !%s",
0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
$ref;
} else {
return $ref;
}
}
sub unalignaddr {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
my $ref="$mnemonic\t$rs1,$rs2,$rd";
foreach ($rs1,$rs2,$rd) {
if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; }
else { return $ref; }
}
return sprintf ".word\t0x%08x !%s",
0x81b00300|$rd<<25|$rs1<<14|$rs2,
$ref;
}
$code =~ s/\`([^\`]*)\`/eval $1/gem;
$code =~ s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),(%f[0-9]{1,2}),(%f[0-9]{1,2})/
&unvis($1,$2,$3,$4)
/gem;
$code =~ s/\b(alignaddr)\s+(%[goli][0-7]),(%[goli][0-7]),(%[goli][0-7])/
&unalignaddr($1,$2,$3,$4)
/gem;
print $code;
close STDOUT;