css_enhanced_waf/materialsystem/stdshaders/common_fxc.h

327 lines
9.6 KiB
C
Raw Normal View History

2020-04-22 18:56:21 +02:00
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#ifndef COMMON_FXC_H_
#define COMMON_FXC_H_
#include "common_pragmas.h"
#include "common_hlsl_cpp_consts.h"
#ifdef NV3X
# define HALF half
# define HALF2 half2
# define HALF3 half3
# define HALF4 half4
# define HALF3x3 half3x3
# define HALF3x4 half3x4
# define HALF4x3 half4x3
# define HALF_CONSTANT( _constant ) ((HALF)_constant)
#else
# define HALF float
# define HALF2 float2
# define HALF3 float3
# define HALF4 float4
# define HALF3x3 float3x3
# define HALF3x4 float3x4
# define HALF4x3 float4x3
# define HALF_CONSTANT( _constant ) _constant
#endif
// This is where all common code for both vertex and pixel shaders.
#define OO_SQRT_3 0.57735025882720947f
static const HALF3 bumpBasis[3] = {
HALF3( 0.81649661064147949f, 0.0f, OO_SQRT_3 ),
HALF3( -0.40824833512306213f, 0.70710676908493042f, OO_SQRT_3 ),
HALF3( -0.40824821591377258f, -0.7071068286895752f, OO_SQRT_3 )
};
static const HALF3 bumpBasisTranspose[3] = {
HALF3( 0.81649661064147949f, -0.40824833512306213f, -0.40824833512306213f ),
HALF3( 0.0f, 0.70710676908493042f, -0.7071068286895752f ),
HALF3( OO_SQRT_3, OO_SQRT_3, OO_SQRT_3 )
};
#if defined( _X360 )
#define REVERSE_DEPTH_ON_X360 //uncomment to use D3DFMT_D24FS8 with an inverted depth viewport for better performance. Keep this in sync with the same named #define in public/shaderapi/shareddefs.h
//Note that the reversal happens in the viewport. So ONLY reading back from a depth texture should be affected. Projected math is unaffected.
#endif
HALF3 CalcReflectionVectorNormalized( HALF3 normal, HALF3 eyeVector )
{
// FIXME: might be better of normalizing with a normalizing cube map and
// get rid of the dot( normal, normal )
// compute reflection vector r = 2 * ((n dot v)/(n dot n)) n - v
return 2.0 * ( dot( normal, eyeVector ) / dot( normal, normal ) ) * normal - eyeVector;
}
HALF3 CalcReflectionVectorUnnormalized( HALF3 normal, HALF3 eyeVector )
{
// FIXME: might be better of normalizing with a normalizing cube map and
// get rid of the dot( normal, normal )
// compute reflection vector r = 2 * ((n dot v)/(n dot n)) n - v
// multiply all values through by N.N. uniformly scaling reflection vector won't affect result
// since it is used in a cubemap lookup
return (2.0*(dot( normal, eyeVector ))*normal) - (dot( normal, normal )*eyeVector);
}
float3 HuePreservingColorClamp( float3 c )
{
// Get the max of all of the color components and a specified maximum amount
float maximum = max( max( c.x, c.y ), max( c.z, 1.0f ) );
return (c / maximum);
}
HALF3 HuePreservingColorClamp( HALF3 c, HALF maxVal )
{
// Get the max of all of the color components and a specified maximum amount
float maximum = max( max( c.x, c.y ), max( c.z, maxVal ) );
return (c * ( maxVal / maximum ) );
}
#if (AA_CLAMP==1)
HALF2 ComputeLightmapCoordinates( HALF4 Lightmap1and2Coord, HALF2 Lightmap3Coord )
{
HALF2 result = saturate(Lightmap1and2Coord.xy) * Lightmap1and2Coord.wz * 0.99;
result += Lightmap3Coord;
return result;
}
void ComputeBumpedLightmapCoordinates( HALF4 Lightmap1and2Coord, HALF2 Lightmap3Coord,
out HALF2 bumpCoord1,
out HALF2 bumpCoord2,
out HALF2 bumpCoord3 )
{
HALF2 result = saturate(Lightmap1and2Coord.xy) * Lightmap1and2Coord.wz * 0.99;
result += Lightmap3Coord;
bumpCoord1 = result + HALF2(Lightmap1and2Coord.z, 0);
bumpCoord2 = result + 2*HALF2(Lightmap1and2Coord.z, 0);
bumpCoord3 = result + 3*HALF2(Lightmap1and2Coord.z, 0);
}
#else
HALF2 ComputeLightmapCoordinates( HALF4 Lightmap1and2Coord, HALF2 Lightmap3Coord )
{
return Lightmap1and2Coord.xy;
}
void ComputeBumpedLightmapCoordinates( HALF4 Lightmap1and2Coord, HALF2 Lightmap3Coord,
out HALF2 bumpCoord1,
out HALF2 bumpCoord2,
out HALF2 bumpCoord3 )
{
bumpCoord1 = Lightmap1and2Coord.xy;
bumpCoord2 = Lightmap1and2Coord.wz; // reversed order!!!
bumpCoord3 = Lightmap3Coord.xy;
}
#endif
// Versions of matrix multiply functions which force HLSL compiler to explictly use DOTs,
// not giving it the option of using MAD expansion. In a perfect world, the compiler would
// always pick the best strategy, and these shouldn't be needed.. but.. well.. umm..
//
// lorenmcq
float3 mul3x3(float3 v, float3x3 m)
{
#if !defined( _X360 )
return float3(dot(v, transpose(m)[0]), dot(v, transpose(m)[1]), dot(v, transpose(m)[2]));
#else
// xbox360 fxc.exe (new back end) borks with transposes, generates bad code
return mul( v, m );
#endif
}
float3 mul4x3(float4 v, float4x3 m)
{
#if !defined( _X360 )
return float3(dot(v, transpose(m)[0]), dot(v, transpose(m)[1]), dot(v, transpose(m)[2]));
#else
// xbox360 fxc.exe (new back end) borks with transposes, generates bad code
return mul( v, m );
#endif
}
float3 DecompressHDR( float4 input )
{
return input.rgb * input.a * MAX_HDR_OVERBRIGHT;
}
float4 CompressHDR( float3 input )
{
// FIXME: want to use min so that we clamp to white, but what happens if we
// have an albedo component that's less than 1/MAX_HDR_OVERBRIGHT?
// float fMax = max( max( color.r, color.g ), color.b );
float4 output;
float fMax = min( min( input.r, input.g ), input.b );
if( fMax > 1.0f )
{
float oofMax = 1.0f / fMax;
output.rgb = oofMax * input.rgb;
output.a = min( fMax / MAX_HDR_OVERBRIGHT, 1.0f );
}
else
{
output.rgb = input.rgb;
output.a = 0.0f;
}
return output;
}
float3 LinearToGamma( const float3 f3linear )
{
return pow( f3linear, 1.0f / 2.2f );
}
float4 LinearToGamma( const float4 f4linear )
{
return float4( pow( f4linear.xyz, 1.0f / 2.2f ), f4linear.w );
}
float LinearToGamma( const float f1linear )
{
return pow( f1linear, 1.0f / 2.2f );
}
float3 GammaToLinear( const float3 gamma )
{
return pow( gamma, 2.2f );
}
float4 GammaToLinear( const float4 gamma )
{
return float4( pow( gamma.xyz, 2.2f ), gamma.w );
}
float GammaToLinear( const float gamma )
{
return pow( gamma, 2.2f );
}
// These two functions use the actual sRGB math
float SrgbGammaToLinear( float flSrgbGammaValue )
{
float x = saturate( flSrgbGammaValue );
return ( x <= 0.04045f ) ? ( x / 12.92f ) : ( pow( ( x + 0.055f ) / 1.055f, 2.4f ) );
}
float SrgbLinearToGamma( float flLinearValue )
{
float x = saturate( flLinearValue );
return ( x <= 0.0031308f ) ? ( x * 12.92f ) : ( 1.055f * pow( x, ( 1.0f / 2.4f ) ) ) - 0.055f;
}
// These twofunctions use the XBox 360's exact piecewise linear algorithm
float X360GammaToLinear( float fl360GammaValue )
{
float flLinearValue;
fl360GammaValue = saturate( fl360GammaValue );
if ( fl360GammaValue < ( 96.0f / 255.0f ) )
{
if ( fl360GammaValue < ( 64.0f / 255.0f ) )
{
flLinearValue = fl360GammaValue * 255.0f;
}
else
{
flLinearValue = fl360GammaValue * ( 255.0f * 2.0f ) - 64.0f;
flLinearValue += floor( flLinearValue * ( 1.0f / 512.0f ) );
}
}
else
{
if( fl360GammaValue < ( 192.0f / 255.0f ) )
{
flLinearValue = fl360GammaValue * ( 255.0f * 4.0f ) - 256.0f;
flLinearValue += floor( flLinearValue * ( 1.0f / 256.0f ) );
}
else
{
flLinearValue = fl360GammaValue * ( 255.0f * 8.0f ) - 1024.0f;
flLinearValue += floor( flLinearValue * ( 1.0f / 128.0f ) );
}
}
flLinearValue *= 1.0f / 1023.0f;
flLinearValue = saturate( flLinearValue );
return flLinearValue;
}
float X360LinearToGamma( float flLinearValue )
{
float fl360GammaValue;
flLinearValue = saturate( flLinearValue );
if ( flLinearValue < ( 128.0f / 1023.0f ) )
{
if ( flLinearValue < ( 64.0f / 1023.0f ) )
{
fl360GammaValue = flLinearValue * ( 1023.0f * ( 1.0f / 255.0f ) );
}
else
{
fl360GammaValue = flLinearValue * ( ( 1023.0f / 2.0f ) * ( 1.0f / 255.0f ) ) + ( 32.0f / 255.0f );
}
}
else
{
if ( flLinearValue < ( 512.0f / 1023.0f ) )
{
fl360GammaValue = flLinearValue * ( ( 1023.0f / 4.0f ) * ( 1.0f / 255.0f ) ) + ( 64.0f / 255.0f );
}
else
{
fl360GammaValue = flLinearValue * ( ( 1023.0f /8.0f ) * ( 1.0f / 255.0f ) ) + ( 128.0f /255.0f ); // 1.0 -> 1.0034313725490196078431372549016
if ( fl360GammaValue > 1.0f )
{
fl360GammaValue = 1.0f;
}
}
}
fl360GammaValue = saturate( fl360GammaValue );
return fl360GammaValue;
}
float SrgbGammaTo360Gamma( float flSrgbGammaValue )
{
float flLinearValue = SrgbGammaToLinear( flSrgbGammaValue );
float fl360GammaValue = X360LinearToGamma( flLinearValue );
return fl360GammaValue;
}
float3 Vec3WorldToTangent( float3 iWorldVector, float3 iWorldNormal, float3 iWorldTangent, float3 iWorldBinormal )
{
float3 vTangentVector;
vTangentVector.x = dot( iWorldVector.xyz, iWorldTangent.xyz );
vTangentVector.y = dot( iWorldVector.xyz, iWorldBinormal.xyz );
vTangentVector.z = dot( iWorldVector.xyz, iWorldNormal.xyz );
return vTangentVector.xyz; // Return without normalizing
}
float3 Vec3WorldToTangentNormalized( float3 iWorldVector, float3 iWorldNormal, float3 iWorldTangent, float3 iWorldBinormal )
{
return normalize( Vec3WorldToTangent( iWorldVector, iWorldNormal, iWorldTangent, iWorldBinormal ) );
}
float3 Vec3TangentToWorld( float3 iTangentVector, float3 iWorldNormal, float3 iWorldTangent, float3 iWorldBinormal )
{
float3 vWorldVector;
vWorldVector.xyz = iTangentVector.x * iWorldTangent.xyz;
vWorldVector.xyz += iTangentVector.y * iWorldBinormal.xyz;
vWorldVector.xyz += iTangentVector.z * iWorldNormal.xyz;
return vWorldVector.xyz; // Return without normalizing
}
float3 Vec3TangentToWorldNormalized( float3 iTangentVector, float3 iWorldNormal, float3 iWorldTangent, float3 iWorldBinormal )
{
return normalize( Vec3TangentToWorld( iTangentVector, iWorldNormal, iWorldTangent, iWorldBinormal ) );
}
#endif //#ifndef COMMON_FXC_H_