223 lines
5.5 KiB
C++
223 lines
5.5 KiB
C++
|
// rabin.cpp - written and placed in the public domain by Wei Dai
|
||
|
|
||
|
#include "pch.h"
|
||
|
#include "rabin.h"
|
||
|
#include "integer.h"
|
||
|
#include "nbtheory.h"
|
||
|
#include "modarith.h"
|
||
|
#include "asn.h"
|
||
|
#include "sha.h"
|
||
|
|
||
|
NAMESPACE_BEGIN(CryptoPP)
|
||
|
|
||
|
void RabinFunction::BERDecode(BufferedTransformation &bt)
|
||
|
{
|
||
|
BERSequenceDecoder seq(bt);
|
||
|
m_n.BERDecode(seq);
|
||
|
m_r.BERDecode(seq);
|
||
|
m_s.BERDecode(seq);
|
||
|
seq.MessageEnd();
|
||
|
}
|
||
|
|
||
|
void RabinFunction::DEREncode(BufferedTransformation &bt) const
|
||
|
{
|
||
|
DERSequenceEncoder seq(bt);
|
||
|
m_n.DEREncode(seq);
|
||
|
m_r.DEREncode(seq);
|
||
|
m_s.DEREncode(seq);
|
||
|
seq.MessageEnd();
|
||
|
}
|
||
|
|
||
|
Integer RabinFunction::ApplyFunction(const Integer &in) const
|
||
|
{
|
||
|
DoQuickSanityCheck();
|
||
|
|
||
|
Integer out = in.Squared()%m_n;
|
||
|
if (in.IsOdd())
|
||
|
out = out*m_r%m_n;
|
||
|
if (Jacobi(in, m_n)==-1)
|
||
|
out = out*m_s%m_n;
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
bool RabinFunction::Validate(RandomNumberGenerator& /*rng*/, unsigned int level) const
|
||
|
{
|
||
|
bool pass = true;
|
||
|
pass = pass && m_n > Integer::One() && m_n%4 == 1;
|
||
|
pass = pass && m_r > Integer::One() && m_r < m_n;
|
||
|
pass = pass && m_s > Integer::One() && m_s < m_n;
|
||
|
if (level >= 1)
|
||
|
pass = pass && Jacobi(m_r, m_n) == -1 && Jacobi(m_s, m_n) == -1;
|
||
|
return pass;
|
||
|
}
|
||
|
|
||
|
bool RabinFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
|
||
|
{
|
||
|
return GetValueHelper(this, name, valueType, pValue).Assignable()
|
||
|
CRYPTOPP_GET_FUNCTION_ENTRY(Modulus)
|
||
|
CRYPTOPP_GET_FUNCTION_ENTRY(QuadraticResidueModPrime1)
|
||
|
CRYPTOPP_GET_FUNCTION_ENTRY(QuadraticResidueModPrime2)
|
||
|
;
|
||
|
}
|
||
|
|
||
|
void RabinFunction::AssignFrom(const NameValuePairs &source)
|
||
|
{
|
||
|
AssignFromHelper(this, source)
|
||
|
CRYPTOPP_SET_FUNCTION_ENTRY(Modulus)
|
||
|
CRYPTOPP_SET_FUNCTION_ENTRY(QuadraticResidueModPrime1)
|
||
|
CRYPTOPP_SET_FUNCTION_ENTRY(QuadraticResidueModPrime2)
|
||
|
;
|
||
|
}
|
||
|
|
||
|
// *****************************************************************************
|
||
|
// private key operations:
|
||
|
|
||
|
// generate a random private key
|
||
|
void InvertibleRabinFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
|
||
|
{
|
||
|
int modulusSize = 2048;
|
||
|
alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize);
|
||
|
|
||
|
if (modulusSize < 16)
|
||
|
throw InvalidArgument("InvertibleRabinFunction: specified modulus size is too small");
|
||
|
|
||
|
// VC70 workaround: putting these after primeParam causes overlapped stack allocation
|
||
|
bool rFound=false, sFound=false;
|
||
|
Integer t=2;
|
||
|
|
||
|
AlgorithmParameters primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize)
|
||
|
("EquivalentTo", 3)("Mod", 4);
|
||
|
m_p.GenerateRandom(rng, primeParam);
|
||
|
m_q.GenerateRandom(rng, primeParam);
|
||
|
|
||
|
while (!(rFound && sFound))
|
||
|
{
|
||
|
int jp = Jacobi(t, m_p);
|
||
|
int jq = Jacobi(t, m_q);
|
||
|
|
||
|
if (!rFound && jp==1 && jq==-1)
|
||
|
{
|
||
|
m_r = t;
|
||
|
rFound = true;
|
||
|
}
|
||
|
|
||
|
if (!sFound && jp==-1 && jq==1)
|
||
|
{
|
||
|
m_s = t;
|
||
|
sFound = true;
|
||
|
}
|
||
|
|
||
|
++t;
|
||
|
}
|
||
|
|
||
|
m_n = m_p * m_q;
|
||
|
m_u = m_q.InverseMod(m_p);
|
||
|
}
|
||
|
|
||
|
void InvertibleRabinFunction::BERDecode(BufferedTransformation &bt)
|
||
|
{
|
||
|
BERSequenceDecoder seq(bt);
|
||
|
m_n.BERDecode(seq);
|
||
|
m_r.BERDecode(seq);
|
||
|
m_s.BERDecode(seq);
|
||
|
m_p.BERDecode(seq);
|
||
|
m_q.BERDecode(seq);
|
||
|
m_u.BERDecode(seq);
|
||
|
seq.MessageEnd();
|
||
|
}
|
||
|
|
||
|
void InvertibleRabinFunction::DEREncode(BufferedTransformation &bt) const
|
||
|
{
|
||
|
DERSequenceEncoder seq(bt);
|
||
|
m_n.DEREncode(seq);
|
||
|
m_r.DEREncode(seq);
|
||
|
m_s.DEREncode(seq);
|
||
|
m_p.DEREncode(seq);
|
||
|
m_q.DEREncode(seq);
|
||
|
m_u.DEREncode(seq);
|
||
|
seq.MessageEnd();
|
||
|
}
|
||
|
|
||
|
Integer InvertibleRabinFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &in) const
|
||
|
{
|
||
|
DoQuickSanityCheck();
|
||
|
|
||
|
ModularArithmetic modn(m_n);
|
||
|
Integer r(rng, Integer::One(), m_n - Integer::One());
|
||
|
r = modn.Square(r);
|
||
|
Integer r2 = modn.Square(r);
|
||
|
Integer c = modn.Multiply(in, r2); // blind
|
||
|
|
||
|
Integer cp=c%m_p, cq=c%m_q;
|
||
|
|
||
|
int jp = Jacobi(cp, m_p);
|
||
|
int jq = Jacobi(cq, m_q);
|
||
|
|
||
|
if (jq==-1)
|
||
|
{
|
||
|
cp = cp*EuclideanMultiplicativeInverse(m_r, m_p)%m_p;
|
||
|
cq = cq*EuclideanMultiplicativeInverse(m_r, m_q)%m_q;
|
||
|
}
|
||
|
|
||
|
if (jp==-1)
|
||
|
{
|
||
|
cp = cp*EuclideanMultiplicativeInverse(m_s, m_p)%m_p;
|
||
|
cq = cq*EuclideanMultiplicativeInverse(m_s, m_q)%m_q;
|
||
|
}
|
||
|
|
||
|
cp = ModularSquareRoot(cp, m_p);
|
||
|
cq = ModularSquareRoot(cq, m_q);
|
||
|
|
||
|
if (jp==-1)
|
||
|
cp = m_p-cp;
|
||
|
|
||
|
Integer out = CRT(cq, m_q, cp, m_p, m_u);
|
||
|
|
||
|
out = modn.Divide(out, r); // unblind
|
||
|
|
||
|
if ((jq==-1 && out.IsEven()) || (jq==1 && out.IsOdd()))
|
||
|
out = m_n-out;
|
||
|
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
bool InvertibleRabinFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
|
||
|
{
|
||
|
bool pass = RabinFunction::Validate(rng, level);
|
||
|
pass = pass && m_p > Integer::One() && m_p%4 == 3 && m_p < m_n;
|
||
|
pass = pass && m_q > Integer::One() && m_q%4 == 3 && m_q < m_n;
|
||
|
pass = pass && m_u.IsPositive() && m_u < m_p;
|
||
|
if (level >= 1)
|
||
|
{
|
||
|
pass = pass && m_p * m_q == m_n;
|
||
|
pass = pass && m_u * m_q % m_p == 1;
|
||
|
pass = pass && Jacobi(m_r, m_p) == 1;
|
||
|
pass = pass && Jacobi(m_r, m_q) == -1;
|
||
|
pass = pass && Jacobi(m_s, m_p) == -1;
|
||
|
pass = pass && Jacobi(m_s, m_q) == 1;
|
||
|
}
|
||
|
if (level >= 2)
|
||
|
pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2);
|
||
|
return pass;
|
||
|
}
|
||
|
|
||
|
bool InvertibleRabinFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
|
||
|
{
|
||
|
return GetValueHelper<RabinFunction>(this, name, valueType, pValue).Assignable()
|
||
|
CRYPTOPP_GET_FUNCTION_ENTRY(Prime1)
|
||
|
CRYPTOPP_GET_FUNCTION_ENTRY(Prime2)
|
||
|
CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
|
||
|
;
|
||
|
}
|
||
|
|
||
|
void InvertibleRabinFunction::AssignFrom(const NameValuePairs &source)
|
||
|
{
|
||
|
AssignFromHelper<RabinFunction>(this, source)
|
||
|
CRYPTOPP_SET_FUNCTION_ENTRY(Prime1)
|
||
|
CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)
|
||
|
CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
|
||
|
;
|
||
|
}
|
||
|
|
||
|
NAMESPACE_END
|