css_enhanced_waf/public/tier1/strtools.h

1286 lines
54 KiB
C
Raw Normal View History

2020-04-22 18:56:21 +02:00
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//===========================================================================//
#ifndef TIER1_STRTOOLS_H
#define TIER1_STRTOOLS_H
#include "tier0/platform.h"
#include <ctype.h>
#include <stdarg.h>
#ifdef _WIN32
#pragma once
#elif POSIX
#include <wchar.h>
#include <math.h>
#include <wctype.h>
#endif
#include <string.h>
#include <stdlib.h>
class CUtlBuffer;
class CUtlString;
#ifdef _WIN64
#define str_size unsigned int
#else
#define str_size size_t
#endif
template< class T, class I > class CUtlMemory;
template< class T, class A > class CUtlVector;
//-----------------------------------------------------------------------------
// Portable versions of standard string functions
//-----------------------------------------------------------------------------
void _V_memset ( const char* file, int line, void *dest, int fill, int count );
void _V_memcpy ( const char* file, int line, void *dest, const void *src, int count );
void _V_memmove ( const char* file, int line, void *dest, const void *src, int count );
int _V_memcmp ( const char* file, int line, const void *m1, const void *m2, int count );
int _V_strlen ( const char* file, int line, const char *str );
void _V_strcpy ( const char* file, int line, char *dest, const char *src );
char* _V_strrchr ( const char* file, int line, const char *s, char c );
int _V_strcmp ( const char* file, int line, const char *s1, const char *s2 );
int _V_wcscmp ( const char* file, int line, const wchar_t *s1, const wchar_t *s2 );
char* _V_strstr ( const char* file, int line, const char *s1, const char *search );
int _V_wcslen ( const char* file, int line, const wchar_t *pwch );
wchar_t* _V_wcslower (const char* file, int line, wchar_t *start);
wchar_t* _V_wcsupr (const char* file, int line, wchar_t *start);
// ASCII-optimized functions which fall back to CRT only when necessary
char *V_strupr( char *start );
char *V_strlower( char *start );
int V_stricmp( const char *s1, const char *s2 );
int V_strncmp( const char *s1, const char *s2, int count );
int V_strnicmp( const char *s1, const char *s2, int n );
//-----------------------------------------------------------------------------
// Purpose: Slightly modified strtok. Does not modify the input string. Does
// not skip over more than one separator at a time. This allows parsing
// strings where tokens between separators may or may not be present:
//
// Door01,,,0 would be parsed as "Door01" "" "" "0"
// Door01,Open,,0 would be parsed as "Door01" "Open" "" "0"
//
// Input : token - Returns with a token, or zero length if the token was missing.
// str - String to parse.
// sep - Character to use as separator. UNDONE: allow multiple separator chars
// Output : Returns a pointer to the next token to be parsed.
//-----------------------------------------------------------------------------
const char *nexttoken(char *token, size_t nMaxTokenLen, const char *str, char sep);
template <size_t maxLenInChars> inline const char *nexttoken( OUT_Z_ARRAY char (&pToken)[maxLenInChars], const char *str, char sep)
{
return nexttoken( pToken, maxLenInChars, str, sep );
}
#ifdef POSIX
inline char *strupr( char *start )
{
return V_strupr( start );
}
inline char *strlwr( char *start )
{
return V_strlower( start );
}
inline wchar_t *_wcslwr( wchar_t *start )
{
wchar_t *str = start;
while( str && *str )
{
*str = (wchar_t)towlower(static_cast<wint_t>(*str));
str++;
}
return start;
};
inline wchar_t *_wcsupr( wchar_t *start )
{
wchar_t *str = start;
while( str && *str )
{
*str = (wchar_t)towupper(static_cast<wint_t>(*str));
str++;
}
return start;
};
#endif // POSIX
#ifdef _DEBUG
#define V_memset(dest, fill, count) _V_memset (__FILE__, __LINE__, (dest), (fill), (count))
#define V_memcpy(dest, src, count) _V_memcpy (__FILE__, __LINE__, (dest), (src), (count))
#define V_memmove(dest, src, count) _V_memmove (__FILE__, __LINE__, (dest), (src), (count))
#define V_memcmp(m1, m2, count) _V_memcmp (__FILE__, __LINE__, (m1), (m2), (count))
#define V_strlen(str) _V_strlen (__FILE__, __LINE__, (str))
#define V_strcpy(dest, src) _V_strcpy (__FILE__, __LINE__, (dest), (src))
#define V_strrchr(s, c) _V_strrchr (__FILE__, __LINE__, (s), (c))
#define V_strcmp(s1, s2) _V_strcmp (__FILE__, __LINE__, (s1), (s2))
#define V_wcscmp(s1, s2) _V_wcscmp (__FILE__, __LINE__, (s1), (s2))
#define V_strstr(s1, search ) _V_strstr (__FILE__, __LINE__, (s1), (search) )
#define V_wcslen(pwch) _V_wcslen (__FILE__, __LINE__, (pwch))
#define V_wcslower(start) _V_wcslower (__FILE__, __LINE__, (start))
#define V_wcsupr(start) _V_wcsupr (__FILE__, __LINE__, (start))
#else
inline void V_memset (void *dest, int fill, int count) { memset( dest, fill, count ); }
inline void V_memcpy (void *dest, const void *src, int count) { memcpy( dest, src, count ); }
inline void V_memmove (void *dest, const void *src, int count) { memmove( dest, src, count ); }
inline int V_memcmp (const void *m1, const void *m2, int count){ return memcmp( m1, m2, count ); }
inline int V_strlen (const char *str) { return (int) strlen ( str ); }
inline void V_strcpy (char *dest, const char *src) { strcpy( dest, src ); }
inline int V_wcslen(const wchar_t *pwch) { return (int)wcslen(pwch); }
inline char* V_strrchr (const char *s, char c) { return (char*)strrchr( s, c ); }
inline int V_strcmp (const char *s1, const char *s2) { return strcmp( s1, s2 ); }
inline int V_wcscmp (const wchar_t *s1, const wchar_t *s2) { return wcscmp( s1, s2 ); }
inline char* V_strstr( const char *s1, const char *search ) { return (char*)strstr( s1, search ); }
inline wchar_t* V_wcslower (wchar_t *start) { return _wcslwr( start ); }
inline wchar_t* V_wcsupr (wchar_t *start) { return _wcsupr( start ); }
#endif
int V_atoi (const char *str);
int64 V_atoi64(const char *str);
uint64 V_atoui64(const char *str);
int64 V_strtoi64( const char *nptr, char **endptr, int base );
uint64 V_strtoui64( const char *nptr, char **endptr, int base );
float V_atof(const char *str);
char* V_stristr( char* pStr, const char* pSearch );
const char* V_stristr( const char* pStr, const char* pSearch );
const char* V_strnistr( const char* pStr, const char* pSearch, int n );
const char* V_strnchr( const char* pStr, char c, int n );
inline int V_strcasecmp (const char *s1, const char *s2) { return V_stricmp(s1, s2); }
inline int V_strncasecmp (const char *s1, const char *s2, int n) { return V_strnicmp(s1, s2, n); }
void V_qsort_s( void *base, size_t num, size_t width, int ( __cdecl *compare )(void *, const void *,
const void *), void *context );
// returns string immediately following prefix, (ie str+strlen(prefix)) or NULL if prefix not found
const char *StringAfterPrefix ( const char *str, const char *prefix );
const char *StringAfterPrefixCaseSensitive( const char *str, const char *prefix );
inline bool StringHasPrefix ( const char *str, const char *prefix ) { return StringAfterPrefix ( str, prefix ) != NULL; }
inline bool StringHasPrefixCaseSensitive( const char *str, const char *prefix ) { return StringAfterPrefixCaseSensitive( str, prefix ) != NULL; }
template< bool CASE_SENSITIVE > inline bool _V_strEndsWithInner( const char *pStr, const char *pSuffix )
{
int nSuffixLen = V_strlen( pSuffix );
int nStringLen = V_strlen( pStr );
if ( nSuffixLen == 0 )
return true; // All strings end with the empty string (matches Java & .NET behaviour)
if ( nStringLen < nSuffixLen )
return false;
pStr += nStringLen - nSuffixLen;
if ( CASE_SENSITIVE )
return !V_strcmp( pStr, pSuffix );
else
return !V_stricmp( pStr, pSuffix );
}
// Does 'pStr' end with 'pSuffix'? (case sensitive/insensitive variants)
inline bool V_strEndsWith( const char *pStr, const char *pSuffix ) { return _V_strEndsWithInner<TRUE>( pStr, pSuffix ); }
inline bool V_striEndsWith( const char *pStr, const char *pSuffix ) { return _V_strEndsWithInner<FALSE>( pStr, pSuffix ); }
// Normalizes a float string in place.
// (removes leading zeros, trailing zeros after the decimal point, and the decimal point itself where possible)
void V_normalizeFloatString( char* pFloat );
// this is locale-unaware and therefore faster version of standard isdigit()
// It also avoids sign-extension errors.
inline bool V_isdigit( char c )
{
return c >= '0' && c <= '9';
}
inline bool V_iswdigit( int c )
{
return ( ( (uint)( c - '0' ) ) < 10 );
}
inline bool V_isempty( const char* pszString ) { return !pszString || !pszString[ 0 ]; }
// The islower/isdigit/etc. functions all expect a parameter that is either
// 0-0xFF or EOF. It is easy to violate this constraint simply by passing
// 'char' to these functions instead of unsigned char.
// The V_ functions handle the char/unsigned char mismatch by taking a
// char parameter and casting it to unsigned char so that chars with the
// sign bit set will be zero extended instead of sign extended.
// Not that EOF cannot be passed to these functions.
//
// These functions could also be used for optimizations if locale
// considerations make some of the CRT functions slow.
//#undef isdigit // In case this is implemented as a macro
//#define isdigit use_V_isdigit_instead_of_isdigit
inline bool V_isalpha(char c) { return isalpha( (unsigned char)c ) != 0; }
//#undef isalpha
//#define isalpha use_V_isalpha_instead_of_isalpha
inline bool V_isalnum(char c) { return isalnum( (unsigned char)c ) != 0; }
//#undef isalnum
//#define isalnum use_V_isalnum_instead_of_isalnum
inline bool V_isprint(char c) { return isprint( (unsigned char)c ) != 0; }
//#undef isprint
//#define isprint use_V_isprint_instead_of_isprint
inline bool V_isxdigit(char c) { return isxdigit( (unsigned char)c ) != 0; }
//#undef isxdigit
//#define isxdigit use_V_isxdigit_instead_of_isxdigit
inline bool V_ispunct(char c) { return ispunct( (unsigned char)c ) != 0; }
//#undef ispunct
//#define ispunct use_V_ispunct_instead_of_ispunct
inline bool V_isgraph(char c) { return isgraph( (unsigned char)c ) != 0; }
//#undef isgraph
//#define isgraph use_V_isgraph_instead_of_isgraph
inline bool V_isupper(char c) { return isupper( (unsigned char)c ) != 0; }
//#undef isupper
//#define isupper use_V_isupper_instead_of_isupper
inline bool V_islower(char c) { return islower( (unsigned char)c ) != 0; }
//#undef islower
//#define islower use_V_islower_instead_of_islower
inline bool V_iscntrl(char c) { return iscntrl( (unsigned char)c ) != 0; }
//#undef iscntrl
//#define iscntrl use_V_iscntrl_instead_of_iscntrl
inline bool V_isspace(char c) { return isspace( (unsigned char)c ) != 0; }
//#undef isspace
//#define isspace use_V_isspace_instead_of_isspace
//-----------------------------------------------------------------------------
// Purpose: returns true if it's a valid hex string
//-----------------------------------------------------------------------------
inline bool V_isvalidhex( char const *in, int inputchars )
{
if ( inputchars < 2 )
return false;
if ( inputchars % 2 == 1 )
return false;
for ( int i = 0; i < inputchars; i++ )
{
char c = in[i];
if ( !(
(c >= '0' && c <= '9') ||
(c >= 'a' && c <= 'f') ||
(c >= 'A' && c <= 'F')
) )
{
return false;
}
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose: Checks if the string is lower case
// NOTE: Only works with ASCII strings
//-----------------------------------------------------------------------------
inline bool V_isstrlower( const char *pch )
{
const char *pCurrent = pch;
while ( *pCurrent != '\0' )
{
if ( *pCurrent >= 'A' && *pCurrent <= 'Z' )
return false;
pCurrent++;
}
return true;
}
// These are versions of functions that guarantee NULL termination.
//
// maxLen is the maximum number of bytes in the destination string.
// pDest[maxLen-1] is always NULL terminated if pSrc's length is >= maxLen.
//
// This means the last parameter can usually be a sizeof() of a string.
void V_strncpy( OUT_Z_CAP(maxLenInChars) char *pDest, const char *pSrc, int maxLenInChars );
// Ultimate safe strcpy function, for arrays only -- buffer size is inferred by the compiler
template <size_t maxLenInChars> void V_strcpy_safe( OUT_Z_ARRAY char (&pDest)[maxLenInChars], const char *pSrc )
{
V_strncpy( pDest, pSrc, (int)maxLenInChars );
}
// A function which duplicates a string using new[] to allocate the new string.
inline char *V_strdup( const char *pSrc )
{
int nLen = V_strlen( pSrc );
char *pResult = new char [ nLen+1 ];
V_memcpy( pResult, pSrc, nLen+1 );
return pResult;
}
void V_wcsncpy( OUT_Z_BYTECAP(maxLenInBytes) wchar_t *pDest, wchar_t const *pSrc, int maxLenInBytes );
template <size_t maxLenInChars> void V_wcscpy_safe( OUT_Z_ARRAY wchar_t (&pDest)[maxLenInChars], wchar_t const *pSrc )
{
V_wcsncpy( pDest, pSrc, maxLenInChars * sizeof(*pDest) );
}
#define COPY_ALL_CHARACTERS -1
char *V_strncat( INOUT_Z_CAP(cchDest) char *pDest, const char *pSrc, size_t cchDest, int max_chars_to_copy=COPY_ALL_CHARACTERS );
template <size_t cchDest> char *V_strcat_safe( INOUT_Z_ARRAY char (&pDest)[cchDest], const char *pSrc, int nMaxCharsToCopy=COPY_ALL_CHARACTERS )
{
return V_strncat( pDest, pSrc, (int)cchDest, nMaxCharsToCopy );
}
wchar_t *V_wcsncat( INOUT_Z_CAP(cchDest) wchar_t *pDest, const wchar_t *pSrc, size_t cchDest, int nMaxCharsToCopy=COPY_ALL_CHARACTERS );
template <size_t cchDest> wchar_t *V_wcscat_safe( INOUT_Z_ARRAY wchar_t (&pDest)[cchDest], const wchar_t *pSrc, int nMaxCharsToCopy=COPY_ALL_CHARACTERS )
{
return V_wcsncat( pDest, pSrc, (int)cchDest, nMaxCharsToCopy );
}
char *V_strnlwr( INOUT_Z_CAP(cchBuf) char *pBuf, size_t cchBuf);
template <size_t cchDest> char *V_strlwr_safe( INOUT_Z_ARRAY char (&pBuf)[cchDest] )
{
return _V_strnlwr( pBuf, (int)cchDest );
}
// Unicode string conversion policies - what to do if an illegal sequence is encountered
enum EStringConvertErrorPolicy
{
_STRINGCONVERTFLAG_SKIP = 1,
_STRINGCONVERTFLAG_FAIL = 2,
_STRINGCONVERTFLAG_ASSERT = 4,
STRINGCONVERT_REPLACE = 0,
STRINGCONVERT_SKIP = _STRINGCONVERTFLAG_SKIP,
STRINGCONVERT_FAIL = _STRINGCONVERTFLAG_FAIL,
STRINGCONVERT_ASSERT_REPLACE = _STRINGCONVERTFLAG_ASSERT + STRINGCONVERT_REPLACE,
STRINGCONVERT_ASSERT_SKIP = _STRINGCONVERTFLAG_ASSERT + STRINGCONVERT_SKIP,
STRINGCONVERT_ASSERT_FAIL = _STRINGCONVERTFLAG_ASSERT + STRINGCONVERT_FAIL,
};
// Unicode (UTF-8, UTF-16, UTF-32) fundamental conversion functions.
bool Q_IsValidUChar32( uchar32 uValue );
int Q_UChar32ToUTF8Len( uchar32 uValue );
int Q_UChar32ToUTF8( uchar32 uValue, char *pOut );
int Q_UChar32ToUTF16Len( uchar32 uValue );
int Q_UChar32ToUTF16( uchar32 uValue, uchar16 *pOut );
// Validate that a Unicode string is well-formed and contains only valid code points
bool Q_UnicodeValidate( const char *pUTF8 );
bool Q_UnicodeValidate( const uchar16 *pUTF16 );
bool Q_UnicodeValidate( const uchar32 *pUTF32 );
// Returns length of string in Unicode code points (printed glyphs or non-printing characters)
int Q_UnicodeLength( const char *pUTF8 );
int Q_UnicodeLength( const uchar16 *pUTF16 );
int Q_UnicodeLength( const uchar32 *pUTF32 );
// Returns length of string in elements, not characters! These are analogous to Q_strlen and Q_wcslen
inline int Q_strlen16( const uchar16 *puc16 ) { int nElems = 0; while ( puc16[nElems] ) ++nElems; return nElems; }
inline int Q_strlen32( const uchar32 *puc32 ) { int nElems = 0; while ( puc32[nElems] ) ++nElems; return nElems; }
// Repair invalid Unicode strings by dropping truncated characters and fixing improperly-double-encoded UTF-16 sequences.
// Unlike conversion functions which replace with '?' by default, a repair operation assumes that you know that something
// is wrong with the string (eg, mid-sequence truncation) and you just want to do the best possible job of cleaning it up.
// You can pass a REPLACE or FAIL policy if you would prefer to replace characters with '?' or clear the entire string.
// Returns nonzero on success, or 0 if the policy is FAIL and an invalid sequence was found.
int Q_UnicodeRepair( char *pUTF8, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_SKIP );
int Q_UnicodeRepair( uchar16 *pUTF16, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_SKIP );
int Q_UnicodeRepair( uchar32 *pUTF32, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_SKIP );
// Advance pointer forward by N Unicode code points (printed glyphs or non-printing characters), stopping at terminating null if encountered.
char *Q_UnicodeAdvance( char *pUTF8, int nCharacters );
uchar16 *Q_UnicodeAdvance( uchar16 *pUTF16, int nCharactersnCharacters );
uchar32 *Q_UnicodeAdvance( uchar32 *pUTF32, int nChars );
inline const char *Q_UnicodeAdvance( const char *pUTF8, int nCharacters ) { return Q_UnicodeAdvance( (char*) pUTF8, nCharacters ); }
inline const uchar16 *Q_UnicodeAdvance( const uchar16 *pUTF16, int nCharacters ) { return Q_UnicodeAdvance( (uchar16*) pUTF16, nCharacters ); }
inline const uchar32 *Q_UnicodeAdvance( const uchar32 *pUTF32, int nCharacters ) { return Q_UnicodeAdvance( (uchar32*) pUTF32, nCharacters ); }
// Truncate to maximum of N Unicode code points (printed glyphs or non-printing characters)
inline void Q_UnicodeTruncate( char *pUTF8, int nCharacters ) { *Q_UnicodeAdvance( pUTF8, nCharacters ) = 0; }
inline void Q_UnicodeTruncate( uchar16 *pUTF16, int nCharacters ) { *Q_UnicodeAdvance( pUTF16, nCharacters ) = 0; }
inline void Q_UnicodeTruncate( uchar32 *pUTF32, int nCharacters ) { *Q_UnicodeAdvance( pUTF32, nCharacters ) = 0; }
// Conversion between Unicode string types (UTF-8, UTF-16, UTF-32). Deals with bytes, not element counts,
// to minimize harm from the programmer mistakes which continue to plague our wide-character string code.
// Returns the number of bytes written to the output, or if output is NULL, the number of bytes required.
int Q_UTF8ToUTF16( const char *pUTF8, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar16 *pUTF16, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE );
int Q_UTF8ToUTF32( const char *pUTF8, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE );
int Q_UTF16ToUTF8( const uchar16 *pUTF16, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE );
int Q_UTF16ToUTF32( const uchar16 *pUTF16, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE );
int Q_UTF32ToUTF8( const uchar32 *pUTF32, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE );
int Q_UTF32ToUTF16( const uchar32 *pUTF32, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar16 *pUTF16, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE );
// This is disgusting and exist only easily to facilitate having 16-bit and 32-bit wchar_t's on different platforms
int Q_UTF32ToUTF32( const uchar32 *pUTF32Source, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32Dest, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE );
// Conversion between count-limited UTF-n character arrays, including any potential NULL characters.
// Output has a terminating NULL for safety; strip the last character if you want an unterminated string.
// Returns the number of bytes written to the output, or if output is NULL, the number of bytes required.
int Q_UTF8CharsToUTF16( const char *pUTF8, int nElements, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar16 *pUTF16, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE );
int Q_UTF8CharsToUTF32( const char *pUTF8, int nElements, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE );
int Q_UTF16CharsToUTF8( const uchar16 *pUTF16, int nElements, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE );
int Q_UTF16CharsToUTF32( const uchar16 *pUTF16, int nElements, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE );
int Q_UTF32CharsToUTF8( const uchar32 *pUTF32, int nElements, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE );
int Q_UTF32CharsToUTF16( const uchar32 *pUTF32, int nElements, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar16 *pUTF16, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE );
// Decode a single UTF-8 character to a uchar32, returns number of UTF-8 bytes parsed
int Q_UTF8ToUChar32( const char *pUTF8_, uchar32 &uValueOut, bool &bErrorOut );
// Decode a single UTF-16 character to a uchar32, returns number of UTF-16 characters (NOT BYTES) consumed
int Q_UTF16ToUChar32( const uchar16 *pUTF16, uchar32 &uValueOut, bool &bErrorOut );
// NOTE: WString means either UTF32 or UTF16 depending on the platform and compiler settings.
#if defined( _MSC_VER ) || defined( _WIN32 )
#define Q_UTF8ToWString Q_UTF8ToUTF16
#define Q_UTF8CharsToWString Q_UTF8CharsToUTF16
#define Q_UTF32ToWString Q_UTF32ToUTF16
#define Q_WStringToUTF8 Q_UTF16ToUTF8
#define Q_WStringCharsToUTF8 Q_UTF16CharsToUTF8
#define Q_WStringToUTF32 Q_UTF16ToUTF32
#else
#define Q_UTF8ToWString Q_UTF8ToUTF32
#define Q_UTF8CharsToWString Q_UTF8CharsToUTF32
#define Q_UTF32ToWString Q_UTF32ToUTF32
#define Q_WStringToUTF8 Q_UTF32ToUTF8
#define Q_WStringCharsToUTF8 Q_UTF32CharsToUTF8
#define Q_WStringToUTF32 Q_UTF32ToUTF32
#endif
// These are legacy names which don't make a lot of sense but are used everywhere. Prefer the WString convention wherever possible
#define V_UTF8ToUnicode Q_UTF8ToWString
#define V_UnicodeToUTF8 Q_WStringToUTF8
#ifdef WIN32
// This function is ill-defined as it relies on the current ANSI code page. Currently Win32 only for tools.
int Q_LocaleSpecificANSIToUTF8( const char *pANSI, int cubSrcInBytes, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes );
#endif
// Windows-1252 is mostly the same as ISO Latin-1, and probably what you want if you are
// saddled with an 8-bit ANSI string that originated on a Windows system.
int Q_Windows1252CharsToUTF8( const char *pchSrc, int cchSrc, OUT_Z_BYTECAP(cchDestUTF8) char *pchDestUTF8, int cchDestUTF8 );
// CP 437 is used for VGA console text and some old-school file formats such as ZIP. It
// is also known as the "IBM PC OEM code page" and various related names. You probably
// don't want to use this function unless you know for a fact that you're dealing with
// old-school OEM code pages. Otherwise try the Windows-1252 function above.
int Q_CP437CharsToUTF8( const char *pchSrc, int cchSrc, OUT_Z_BYTECAP(cchDestUTF8) char *pchDestUTF8, int cchDestUTF8 );
// replaces characters in a UTF8 string with their identical-looking equivalent (non-roundtrippable)
//
// older version of API uses a small homoglyph table; newer version uses a larger one
//
// strings using old version are baked into the database, so we won't toss it quite yet,
// but don't use it for new features.
int Q_NormalizeUTF8Old( const char *pchSrc, OUT_Z_CAP(cchDest) char *pchDest, int cchDest );
int Q_NormalizeUTF8( const char *pchSrc, OUT_Z_CAP(cchDest) char *pchDest, int cchDest );
//-----------------------------------------------------------------------------
// Purpose: replaces characters in a UTF8 string with similar-looking equivalents.
// Only replaces with ASCII characters.. non-recognized characters will be replaced with ?
// This operation is destructive (i.e. you can't roundtrip through the normalized
// form).
//-----------------------------------------------------------------------------
template <size_t maxLenInChars> int Q_NormalizeUTF8ToASCII( OUT_Z_ARRAY char (&pchDest)[maxLenInChars], const char *pchSrc )
{
int nResult = Q_NormalizeUTF8( pchSrc, pchDest, maxLenInChars );
// replace non ASCII characters with ?
for ( int i = 0; i < nResult; i++ )
{
if ( pchDest[i] > 127 || pchDest[i] < 0 )
{
pchDest[i] = '?';
}
}
return nResult;
}
// UNDONE: Find a non-compiler-specific way to do this
#ifdef _WIN32
#ifndef _VA_LIST_DEFINED
#ifdef _M_ALPHA
struct va_list
{
char *a0; /* pointer to first homed integer argument */
int offset; /* byte offset of next parameter */
};
#else // !_M_ALPHA
typedef char * va_list;
#endif // !_M_ALPHA
#define _VA_LIST_DEFINED
#endif // _VA_LIST_DEFINED
#elif POSIX
#include <stdarg.h>
#endif
#ifdef _WIN32
#define CORRECT_PATH_SEPARATOR '\\'
#define CORRECT_PATH_SEPARATOR_S "\\"
#define INCORRECT_PATH_SEPARATOR '/'
#define INCORRECT_PATH_SEPARATOR_S "/"
#elif POSIX
#define CORRECT_PATH_SEPARATOR '/'
#define CORRECT_PATH_SEPARATOR_S "/"
#define INCORRECT_PATH_SEPARATOR '\\'
#define INCORRECT_PATH_SEPARATOR_S "\\"
#endif
int V_vsnprintf( OUT_Z_CAP(maxLenInCharacters) char *pDest, int maxLenInCharacters, PRINTF_FORMAT_STRING const char *pFormat, va_list params );
template <size_t maxLenInCharacters> int V_vsprintf_safe( OUT_Z_ARRAY char (&pDest)[maxLenInCharacters], PRINTF_FORMAT_STRING const char *pFormat, va_list params ) { return V_vsnprintf( pDest, maxLenInCharacters, pFormat, params ); }
int V_snprintf( OUT_Z_CAP(maxLenInChars) char *pDest, int maxLenInChars, PRINTF_FORMAT_STRING const char *pFormat, ... ) FMTFUNCTION( 3, 4 );
// gcc insists on only having format annotations on declarations, not definitions, which is why I have both.
template <size_t maxLenInChars> int V_sprintf_safe( OUT_Z_ARRAY char (&pDest)[maxLenInChars], PRINTF_FORMAT_STRING const char *pFormat, ... ) FMTFUNCTION( 2, 3 );
template <size_t maxLenInChars> int V_sprintf_safe( OUT_Z_ARRAY char (&pDest)[maxLenInChars], PRINTF_FORMAT_STRING const char *pFormat, ... )
{
va_list params;
va_start( params, pFormat );
int result = V_vsnprintf( pDest, maxLenInChars, pFormat, params );
va_end( params );
return result;
}
// gcc insists on only having format annotations on declarations, not definitions, which is why I have both.
// Append formatted text to an array in a safe manner -- always null-terminated, truncation rather than buffer overrun.
template <size_t maxLenInChars> int V_sprintfcat_safe( INOUT_Z_ARRAY char (&pDest)[maxLenInChars], PRINTF_FORMAT_STRING const char *pFormat, ... ) FMTFUNCTION( 2, 3 );
template <size_t maxLenInChars> int V_sprintfcat_safe( INOUT_Z_ARRAY char (&pDest)[maxLenInChars], PRINTF_FORMAT_STRING const char *pFormat, ... )
{
va_list params;
va_start( params, pFormat );
size_t usedLength = V_strlen(pDest);
// This code is here to check against buffer overruns when uninitialized arrays are passed in.
// It should never be executed. Unfortunately we can't assert in this header file.
if ( usedLength >= maxLenInChars )
usedLength = 0;
int result = V_vsnprintf( pDest + usedLength, maxLenInChars - usedLength, pFormat, params );
va_end( params );
return result;
}
int V_vsnwprintf( OUT_Z_CAP(maxLenInCharacters) wchar_t *pDest, int maxLenInCharacters, PRINTF_FORMAT_STRING const wchar_t *pFormat, va_list params );
template <size_t maxLenInCharacters> int V_vswprintf_safe( OUT_Z_ARRAY wchar_t (&pDest)[maxLenInCharacters], PRINTF_FORMAT_STRING const wchar_t *pFormat, va_list params ) { return V_vsnwprintf( pDest, maxLenInCharacters, pFormat, params ); }
int V_vsnprintfRet( OUT_Z_CAP(maxLenInCharacters) char *pDest, int maxLenInCharacters, PRINTF_FORMAT_STRING const char *pFormat, va_list params, bool *pbTruncated );
template <size_t maxLenInCharacters> int V_vsprintfRet_safe( OUT_Z_ARRAY char (&pDest)[maxLenInCharacters], PRINTF_FORMAT_STRING const char *pFormat, va_list params, bool *pbTruncated ) { return V_vsnprintfRet( pDest, maxLenInCharacters, pFormat, params, pbTruncated ); }
// FMTFUNCTION can only be used on ASCII functions, not wide-char functions.
int V_snwprintf( OUT_Z_CAP(maxLenInCharacters) wchar_t *pDest, int maxLenInCharacters, PRINTF_FORMAT_STRING const wchar_t *pFormat, ... );
template <size_t maxLenInChars> int V_swprintf_safe( OUT_Z_ARRAY wchar_t (&pDest)[maxLenInChars], PRINTF_FORMAT_STRING const wchar_t *pFormat, ... )
{
va_list params;
va_start( params, pFormat );
int result = V_vsnwprintf( pDest, maxLenInChars, pFormat, params );
va_end( params );
return result;
}
// Prints out a pretified memory counter string value ( e.g., 7,233.27 Mb, 1,298.003 Kb, 127 bytes )
char *V_pretifymem( float value, int digitsafterdecimal = 2, bool usebinaryonek = false );
// Prints out a pretified integer with comma separators (eg, 7,233,270,000)
char *V_pretifynum( int64 value );
int _V_UCS2ToUnicode( const ucs2 *pUCS2, OUT_Z_BYTECAP(cubDestSizeInBytes) wchar_t *pUnicode, int cubDestSizeInBytes );
template< typename T > inline int V_UCS2ToUnicode( const ucs2 *pUCS2, OUT_Z_BYTECAP(cubDestSizeInBytes) wchar_t *pUnicode, T cubDestSizeInBytes )
{
return _V_UCS2ToUnicode( pUCS2, pUnicode, static_cast<int>(cubDestSizeInBytes) );
}
int _V_UCS2ToUTF8( const ucs2 *pUCS2, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes );
template< typename T > inline int V_UCS2ToUTF8( const ucs2 *pUCS2, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, T cubDestSizeInBytes )
{
return _V_UCS2ToUTF8( pUCS2, pUTF8, static_cast<int>(cubDestSizeInBytes) );
}
int _V_UnicodeToUCS2( const wchar_t *pUnicode, int cubSrcInBytes, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUCS2, int cubDestSizeInBytes );
template< typename T, typename U > inline int V_UnicodeToUCS2( const wchar_t *pUnicode, T cubSrcInBytes, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUCS2, U cubDestSizeInBytes )
{
return _V_UnicodeToUCS2( pUnicode, static_cast<int>(cubSrcInBytes), pUCS2, static_cast<int>(cubDestSizeInBytes) );
}
int _V_UTF8ToUCS2( const char *pUTF8, int cubSrcInBytes, OUT_Z_BYTECAP(cubDestSizeInBytes) ucs2 *pUCS2, int cubDestSizeInBytes );
template< typename T, typename U > inline int V_UTF8ToUCS2( const char *pUTF8, T cubSrcInBytes, OUT_Z_BYTECAP(cubDestSizeInBytes) ucs2 *pUCS2, U cubDestSizeInBytes )
{
return _V_UTF8ToUCS2( pUTF8, static_cast<int>(cubSrcInBytes), pUCS2, static_cast<int>(cubDestSizeInBytes) );
}
// strips leading and trailing whitespace; returns true if any characters were removed. UTF-8 and UTF-16 versions.
bool Q_StripPrecedingAndTrailingWhitespace( char *pch );
bool Q_StripPrecedingAndTrailingWhitespaceW( wchar_t *pwch );
// strips leading and trailing whitespace, also taking "aggressive" characters
// like punctuation spaces, non-breaking spaces, composing characters, and so on
bool Q_AggressiveStripPrecedingAndTrailingWhitespace( char *pch );
bool Q_AggressiveStripPrecedingAndTrailingWhitespaceW( wchar_t *pwch );
bool Q_RemoveAllEvilCharacters( char *pch );
// Functions for converting hexidecimal character strings back into binary data etc.
//
// e.g.,
// int output;
// V_hextobinary( "ffffffff", 8, &output, sizeof( output ) );
// would make output == 0xfffffff or -1
// Similarly,
// char buffer[ 9 ];
// V_binarytohex( &output, sizeof( output ), buffer, sizeof( buffer ) );
// would put "ffffffff" into buffer (note null terminator!!!)
unsigned char V_nibble( char c );
void V_hextobinary( char const *in, int numchars, byte *out, int maxoutputbytes );
void V_binarytohex( const byte *in, int inputbytes, char *out, int outsize );
// Tools for working with filenames
// Extracts the base name of a file (no path, no extension, assumes '/' or '\' as path separator)
void V_FileBase( const char *in, char *out,int maxlen );
// Remove the final characters of ppath if it's '\' or '/'.
void V_StripTrailingSlash( char *ppath );
// Remove the final characters of ppline if they are whitespace (uses V_isspace)
void V_StripTrailingWhitespace( char *ppline );
// Remove the initial characters of ppline if they are whitespace (uses V_isspace)
void V_StripLeadingWhitespace( char *ppline );
// Remove the initial/final characters of ppline if they are " quotes
void V_StripSurroundingQuotes( char *ppline );
// Remove any extension from in and return resulting string in out
void V_StripExtension( const char *in, char *out, int outLen );
// Make path end with extension if it doesn't already have an extension
void V_DefaultExtension( char *path, const char *extension, int pathStringLength );
// Strips any current extension from path and ensures that extension is the new extension
void V_SetExtension( char *path, const char *extension, int pathStringLength );
// Removes any filename from path ( strips back to previous / or \ character )
void V_StripFilename( char *path );
// Remove the final directory from the path
bool V_StripLastDir( char *dirName, int maxlen );
// Returns a pointer to the unqualified file name (no path) of a file name
const char * V_UnqualifiedFileName( const char * in );
// Given a path and a filename, composes "path\filename", inserting the (OS correct) separator if necessary
void V_ComposeFileName( const char *path, const char *filename, char *dest, int destSize );
// Copy out the path except for the stuff after the final pathseparator
bool V_ExtractFilePath( const char *path, char *dest, int destSize );
// Copy out the file extension into dest
void V_ExtractFileExtension( const char *path, char *dest, int destSize );
const char *V_GetFileExtension( const char * path );
// returns a pointer to just the filename part of the path
// (everything after the last path seperator)
const char *V_GetFileName( const char * path );
// This removes "./" and "../" from the pathname. pFilename should be a full pathname.
// Also incorporates the behavior of V_FixSlashes and optionally V_FixDoubleSlashes.
// Returns false if it tries to ".." past the root directory in the drive (in which case
// it is an invalid path).
bool V_RemoveDotSlashes( char *pFilename, char separator = CORRECT_PATH_SEPARATOR, bool bRemoveDoubleSlashes = true );
// If pPath is a relative path, this function makes it into an absolute path
// using the current working directory as the base, or pStartingDir if it's non-NULL.
// Returns false if it runs out of room in the string, or if pPath tries to ".." past the root directory.
void V_MakeAbsolutePath( char *pOut, int outLen, const char *pPath, const char *pStartingDir = NULL );
inline void V_MakeAbsolutePath( char *pOut, int outLen, const char *pPath, const char *pStartingDir, bool bLowercaseName )
{
V_MakeAbsolutePath( pOut, outLen, pPath, pStartingDir );
if ( bLowercaseName )
{
V_strlower( pOut );
}
}
// Creates a relative path given two full paths
// The first is the full path of the file to make a relative path for.
// The second is the full path of the directory to make the first file relative to
// Returns false if they can't be made relative (on separate drives, for example)
bool V_MakeRelativePath( const char *pFullPath, const char *pDirectory, char *pRelativePath, int nBufLen );
// Fixes up a file name, removing dot slashes, fixing slashes, converting to lowercase, etc.
void V_FixupPathName( OUT_Z_CAP(nOutLen) char *pOut, size_t nOutLen, const char *pPath );
// Adds a path separator to the end of the string if there isn't one already. Returns false if it would run out of space.
void V_AppendSlash( INOUT_Z_CAP(strSize) char *pStr, int strSize );
// Returns true if the path is an absolute path.
bool V_IsAbsolutePath( IN_Z const char *pPath );
// Scans pIn and replaces all occurences of pMatch with pReplaceWith.
// Writes the result to pOut.
// Returns true if it completed successfully.
// If it would overflow pOut, it fills as much as it can and returns false.
bool V_StrSubst( IN_Z const char *pIn, IN_Z const char *pMatch, const char *pReplaceWith,
OUT_Z_CAP(outLen) char *pOut, int outLen, bool bCaseSensitive=false );
// Split the specified string on the specified separator.
// Returns a list of strings separated by pSeparator.
// You are responsible for freeing the contents of outStrings (call outStrings.PurgeAndDeleteElements).
void V_SplitString( IN_Z const char *pString, IN_Z const char *pSeparator, CUtlVector<char*, CUtlMemory<char*, int> > &outStrings );
void V_SplitString( const char *pString, const char *pSeparator, CUtlVector< CUtlString, CUtlMemory<CUtlString, int> > &outStrings, bool bIncludeEmptyStrings = false );
// Just like V_SplitString, but it can use multiple possible separators.
void V_SplitString2( IN_Z const char *pString, const char **pSeparators, int nSeparators, CUtlVector<char*, CUtlMemory<char*, int> > &outStrings );
// Returns false if the buffer is not large enough to hold the working directory name.
bool V_GetCurrentDirectory( OUT_Z_CAP(maxLen) char *pOut, int maxLen );
// Set the working directory thus.
bool V_SetCurrentDirectory( const char *pDirName );
// This function takes a slice out of pStr and stores it in pOut.
// It follows the Python slice convention:
// Negative numbers wrap around the string (-1 references the last character).
// Large numbers are clamped to the end of the string.
void V_StrSlice( const char *pStr, int firstChar, int lastCharNonInclusive, OUT_Z_CAP(outSize) char *pOut, int outSize );
// Chop off the left nChars of a string.
void V_StrLeft( const char *pStr, int nChars, OUT_Z_CAP(outSize) char *pOut, int outSize );
// Chop off the right nChars of a string.
void V_StrRight( const char *pStr, int nChars, OUT_Z_CAP(outSize) char *pOut, int outSize );
// change "special" characters to have their c-style backslash sequence. like \n, \r, \t, ", etc.
// returns a pointer to a newly allocated string, which you must delete[] when finished with.
char *V_AddBackSlashesToSpecialChars( char const *pSrc );
// Force slashes of either type to be = separator character
void V_FixSlashes( char *pname, char separator = CORRECT_PATH_SEPARATOR );
// This function fixes cases of filenames like materials\\blah.vmt or somepath\otherpath\\ and removes the extra double slash.
void V_FixDoubleSlashes( char *pStr );
// Convert multibyte to wchar + back
// Specify -1 for nInSize for null-terminated string
void V_strtowcs( const char *pString, int nInSize, OUT_Z_BYTECAP(nOutSizeInBytes) wchar_t *pWString, int nOutSizeInBytes );
void V_wcstostr( const wchar_t *pWString, int nInSize, OUT_Z_CAP(nOutSizeInBytes) char *pString, int nOutSizeInBytes );
// buffer-safe strcat
inline void V_strcat( INOUT_Z_CAP(cchDest) char *dest, const char *src, int cchDest )
{
V_strncat( dest, src, cchDest, COPY_ALL_CHARACTERS );
}
// Buffer safe wcscat
inline void V_wcscat( INOUT_Z_CAP(cchDest) wchar_t *dest, const wchar_t *src, int cchDest )
{
V_wcsncat( dest, src, cchDest, COPY_ALL_CHARACTERS );
}
// Encode a string for display as HTML -- this only encodes ' " & < >, which are the important ones to encode for
// security and ensuring HTML display doesn't break. Other special chars like the ? sign and so forth will not
// be encoded
//
// Returns false if there was not enough room in pDest to encode the entire source string, otherwise true
bool V_BasicHtmlEntityEncode( OUT_Z_CAP( nDestSize ) char *pDest, const int nDestSize, char const *pIn, const int nInSize, bool bPreserveWhitespace = false );
// Decode a string with htmlentities HTML -- this should handle all special chars, not just the ones Q_BasicHtmlEntityEncode uses.
//
// Returns false if there was not enough room in pDest to decode the entire source string, otherwise true
bool V_HtmlEntityDecodeToUTF8( OUT_Z_CAP( nDestSize ) char *pDest, const int nDestSize, char const *pIn, const int nInSize );
// strips HTML from a string. Should call Q_HTMLEntityDecodeToUTF8 afterward.
void V_StripAndPreserveHTML( CUtlBuffer *pbuffer, const char *pchHTML, const char **rgszPreserveTags, uint cPreserveTags, uint cMaxResultSize );
void V_StripAndPreserveHTMLCore( CUtlBuffer *pbuffer, const char *pchHTML, const char **rgszPreserveTags, uint cPreserveTags, const char **rgszNoCloseTags, uint cNoCloseTags, uint cMaxResultSize );
// Extracts the domain from a URL
bool V_ExtractDomainFromURL( const char *pchURL, OUT_Z_CAP( cchDomain ) char *pchDomain, int cchDomain );
// returns true if the url passed in is on the specified domain
bool V_URLContainsDomain( const char *pchURL, const char *pchDomain );
//-----------------------------------------------------------------------------
// returns true if the character is allowed in a URL, false otherwise
//-----------------------------------------------------------------------------
bool V_IsValidURLCharacter( const char *pch, int *pAdvanceBytes );
//-----------------------------------------------------------------------------
// returns true if the character is allowed in a DNS doman name, false otherwise
//-----------------------------------------------------------------------------
bool V_IsValidDomainNameCharacter( const char *pch, int *pAdvanceBytes );
// Converts BBCode tags to HTML tags
bool V_BBCodeToHTML( OUT_Z_CAP( nDestSize ) char *pDest, const int nDestSize, char const *pIn, const int nInSize );
// helper to identify "mean" spaces, which we don't like in visible identifiers
// such as player Name
bool V_IsMeanSpaceW( wchar_t wch );
// helper to identify characters which are deprecated in Unicode,
// and we simply don't accept
bool V_IsDeprecatedW( wchar_t wch );
//-----------------------------------------------------------------------------
// generic unique name helper functions
//-----------------------------------------------------------------------------
// returns startindex if none found, 2 if "prefix" found, and n+1 if "prefixn" found
template < class NameArray >
int V_GenerateUniqueNameIndex( const char *prefix, const NameArray &nameArray, int startindex = 0 )
{
if ( prefix == NULL )
return 0;
int freeindex = startindex;
int nNames = nameArray.Count();
for ( int i = 0; i < nNames; ++i )
{
const char *pName = nameArray[ i ];
if ( !pName )
continue;
const char *pIndexStr = StringAfterPrefix( pName, prefix );
if ( pIndexStr )
{
int index = *pIndexStr ? atoi( pIndexStr ) : 1;
if ( index >= freeindex )
{
// TODO - check that there isn't more junk after the index in pElementName
freeindex = index + 1;
}
}
}
return freeindex;
}
template < class NameArray >
bool V_GenerateUniqueName( OUT_Z_CAP(memsize) char *name, int memsize, const char *prefix, const NameArray &nameArray )
{
if ( name == NULL || memsize == 0 )
return false;
if ( prefix == NULL )
{
name[ 0 ] = '\0';
return false;
}
int prefixLength = V_strlen( prefix );
if ( prefixLength + 1 > memsize )
{
name[ 0 ] = '\0';
return false;
}
int i = V_GenerateUniqueNameIndex( prefix, nameArray );
if ( i <= 0 )
{
V_strncpy( name, prefix, memsize );
return true;
}
int newlen = prefixLength + ( int )log10( ( float )i ) + 1;
if ( newlen + 1 > memsize )
{
V_strncpy( name, prefix, memsize );
return false;
}
V_snprintf( name, memsize, "%s%d", prefix, i );
return true;
}
//
// This utility class is for performing UTF-8 <-> UTF-16 conversion.
// It is intended for use with function/method parameters.
//
// For example, you can call
// FunctionTakingUTF16( CStrAutoEncode( utf8_string ).ToWString() )
// or
// FunctionTakingUTF8( CStrAutoEncode( utf16_string ).ToString() )
//
// The converted string is allocated off the heap, and destroyed when
// the object goes out of scope.
//
// if the string cannot be converted, NULL is returned.
//
// This class doesn't have any conversion operators; the intention is
// to encourage the developer to get used to having to think about which
// encoding is desired.
//
class CStrAutoEncode
{
public:
// ctor
explicit CStrAutoEncode( const char *pch )
{
m_pch = pch;
m_pwch = NULL;
#if !defined( WIN32 ) && !defined(_WIN32)
m_pucs2 = NULL;
m_bCreatedUCS2 = false;
#endif
m_bCreatedUTF16 = false;
}
// ctor
explicit CStrAutoEncode( const wchar_t *pwch )
{
m_pch = NULL;
m_pwch = pwch;
#if !defined( WIN32 ) && !defined(_WIN32)
m_pucs2 = NULL;
m_bCreatedUCS2 = false;
#endif
m_bCreatedUTF16 = true;
}
#if !defined(WIN32) && !defined(_WINDOWS) && !defined(_WIN32)
explicit CStrAutoEncode( const ucs2 *pwch )
{
m_pch = NULL;
m_pwch = NULL;
m_pucs2 = pwch;
m_bCreatedUCS2 = true;
m_bCreatedUTF16 = false;
}
#endif
// returns the UTF-8 string, converting on the fly.
const char* ToString()
{
PopulateUTF8();
return m_pch;
}
// returns the UTF-8 string - a writable pointer.
// only use this if you don't want to call const_cast
// yourself. We need this for cases like CreateProcess.
char* ToStringWritable()
{
PopulateUTF8();
return const_cast< char* >( m_pch );
}
// returns the UTF-16 string, converting on the fly.
const wchar_t* ToWString()
{
PopulateUTF16();
return m_pwch;
}
#if !defined( WIN32 ) && !defined(_WIN32)
// returns the UTF-16 string, converting on the fly.
const ucs2* ToUCS2String()
{
PopulateUCS2();
return m_pucs2;
}
#endif
// returns the UTF-16 string - a writable pointer.
// only use this if you don't want to call const_cast
// yourself. We need this for cases like CreateProcess.
wchar_t* ToWStringWritable()
{
PopulateUTF16();
return const_cast< wchar_t* >( m_pwch );
}
// dtor
~CStrAutoEncode()
{
// if we're "native unicode" then the UTF-8 string is something we allocated,
// and vice versa.
if ( m_bCreatedUTF16 )
{
delete [] m_pch;
}
else
{
delete [] m_pwch;
}
#if !defined( WIN32 ) && !defined(_WIN32)
if ( !m_bCreatedUCS2 && m_pucs2 )
delete [] m_pucs2;
#endif
}
private:
// ensure we have done any conversion work required to farm out a
// UTF-8 encoded string.
//
// We perform two heap allocs here; the first one is the worst-case
// (four bytes per Unicode code point). This is usually quite pessimistic,
// so we perform a second allocation that's just the size we need.
void PopulateUTF8()
{
if ( !m_bCreatedUTF16 )
return; // no work to do
if ( m_pwch == NULL )
return; // don't have a UTF-16 string to convert
if ( m_pch != NULL )
return; // already been converted to UTF-8; no work to do
// each Unicode code point can expand to as many as four bytes in UTF-8; we
// also need to leave room for the terminating NUL.
uint32 cbMax = 4 * static_cast<uint32>( V_wcslen( m_pwch ) ) + 1;
char *pchTemp = new char[ cbMax ];
if ( V_UnicodeToUTF8( m_pwch, pchTemp, cbMax ) )
{
uint32 cchAlloc = static_cast<uint32>( V_strlen( pchTemp ) ) + 1;
char *pchHeap = new char[ cchAlloc ];
V_strncpy( pchHeap, pchTemp, cchAlloc );
delete [] pchTemp;
m_pch = pchHeap;
}
else
{
// do nothing, and leave the UTF-8 string NULL
delete [] pchTemp;
}
}
// ensure we have done any conversion work required to farm out a
// UTF-16 encoded string.
//
// We perform two heap allocs here; the first one is the worst-case
// (one code point per UTF-8 byte). This is sometimes pessimistic,
// so we perform a second allocation that's just the size we need.
void PopulateUTF16()
{
if ( m_bCreatedUTF16 )
return; // no work to do
if ( m_pch == NULL )
return; // no UTF-8 string to convert
if ( m_pwch != NULL )
return; // already been converted to UTF-16; no work to do
uint32 cchMax = static_cast<uint32>( V_strlen( m_pch ) ) + 1;
wchar_t *pwchTemp = new wchar_t[ cchMax ];
if ( V_UTF8ToUnicode( m_pch, pwchTemp, cchMax * sizeof( wchar_t ) ) )
{
uint32 cchAlloc = static_cast<uint32>( V_wcslen( pwchTemp ) ) + 1;
wchar_t *pwchHeap = new wchar_t[ cchAlloc ];
V_wcsncpy( pwchHeap, pwchTemp, cchAlloc * sizeof( wchar_t ) );
delete [] pwchTemp;
m_pwch = pwchHeap;
}
else
{
// do nothing, and leave the UTF-16 string NULL
delete [] pwchTemp;
}
}
#if !defined( WIN32 ) && !defined(_WIN32)
// ensure we have done any conversion work required to farm out a
// UTF-16 encoded string.
//
// We perform two heap allocs here; the first one is the worst-case
// (one code point per UTF-8 byte). This is sometimes pessimistic,
// so we perform a second allocation that's just the size we need.
void PopulateUCS2()
{
if ( m_bCreatedUCS2 )
return;
if ( m_pch == NULL )
return; // no UTF-8 string to convert
if ( m_pucs2 != NULL )
return; // already been converted to UTF-16; no work to do
uint32 cchMax = static_cast<uint32>( V_strlen( m_pch ) ) + 1;
ucs2 *pwchTemp = new ucs2[ cchMax ];
if ( V_UTF8ToUCS2( m_pch, cchMax, pwchTemp, cchMax * sizeof( ucs2 ) ) )
{
uint32 cchAlloc = cchMax;
ucs2 *pwchHeap = new ucs2[ cchAlloc ];
memcpy( pwchHeap, pwchTemp, cchAlloc * sizeof( ucs2 ) );
delete [] pwchTemp;
m_pucs2 = pwchHeap;
}
else
{
// do nothing, and leave the UTF-16 string NULL
delete [] pwchTemp;
}
}
#endif
// one of these pointers is an owned pointer; whichever
// one is the encoding OTHER than the one we were initialized
// with is the pointer we've allocated and must free.
const char *m_pch;
const wchar_t *m_pwch;
#if !defined( WIN32 ) && !defined(_WIN32)
const ucs2 *m_pucs2;
bool m_bCreatedUCS2;
#endif
// "created as UTF-16", means our owned string is the UTF-8 string not the UTF-16 one.
bool m_bCreatedUTF16;
};
// Encodes a string (or binary data) in URL encoding format, see rfc1738 section 2.2.
// Dest buffer should be 3 times the size of source buffer to guarantee it has room to encode.
void Q_URLEncodeRaw( OUT_Z_CAP(nDestLen) char *pchDest, int nDestLen, const char *pchSource, int nSourceLen );
// Decodes a string (or binary data) from URL encoding format, see rfc1738 section 2.2.
// Dest buffer should be at least as large as source buffer to gurantee room for decode.
// Dest buffer being the same as the source buffer (decode in-place) is explicitly allowed.
//
// Returns the amount of space actually used in the output buffer.
size_t Q_URLDecodeRaw( OUT_CAP(nDecodeDestLen) char *pchDecodeDest, int nDecodeDestLen, const char *pchEncodedSource, int nEncodedSourceLen );
// trim right whitespace
inline char* TrimRight( char *pString )
{
char *pEnd = pString + V_strlen( pString );
// trim
while ( pString < ( pEnd-- ) )
{
if ( uint( *pEnd ) <= uint( ' ' ) )
{
*pEnd = '\0';
}
else
break;
}
return pString;
}
inline const char * SkipBlanks( const char *pString )
{
const char *p = pString;
while ( *p && uint( *p ) <= uint( ' ' ) )
{
p++;
}
return p;
}
inline int V_strcspn( const char *s1, const char *search ) { return (int)( strcspn( s1, search ) ); }
// Encodes a string (or binary data) in URL encoding format, this isn't the strict rfc1738 format, but instead uses + for spaces.
// This is for historical reasons and HTML spec foolishness that lead to + becoming a de facto standard for spaces when encoding form data.
// Dest buffer should be 3 times the size of source buffer to guarantee it has room to encode.
void Q_URLEncode( OUT_Z_CAP(nDestLen) char *pchDest, int nDestLen, const char *pchSource, int nSourceLen );
// Decodes a string (or binary data) in URL encoding format, this isn't the strict rfc1738 format, but instead uses + for spaces.
// This is for historical reasons and HTML spec foolishness that lead to + becoming a de facto standard for spaces when encoding form data.
// Dest buffer should be at least as large as source buffer to gurantee room for decode.
// Dest buffer being the same as the source buffer (decode in-place) is explicitly allowed.
//
// Returns the amount of space actually used in the output buffer.
size_t Q_URLDecode( OUT_CAP(nDecodeDestLen) char *pchDecodeDest, int nDecodeDestLen, const char *pchEncodedSource, int nEncodedSourceLen );
// NOTE: This is for backward compatability!
// We need to DLL-export the Q methods in vstdlib but not link to them in other projects
#if !defined( VSTDLIB_BACKWARD_COMPAT )
#define Q_memset V_memset
#define Q_memcpy V_memcpy
#define Q_memmove V_memmove
#define Q_memcmp V_memcmp
#define Q_strlen V_strlen
#define Q_strcpy V_strcpy
#define Q_strrchr V_strrchr
#define Q_strcmp V_strcmp
#define Q_wcscmp V_wcscmp
#define Q_stricmp V_stricmp
#define Q_strstr V_strstr
#define Q_strupr V_strupr
#define Q_strlower V_strlower
#define Q_wcslen V_wcslen
#define Q_strncmp V_strncmp
#define Q_strcasecmp V_strcasecmp
#define Q_strncasecmp V_strncasecmp
#define Q_strnicmp V_strnicmp
#define Q_atoi V_atoi
#define Q_atoi64 V_atoi64
#define Q_atoui64 V_atoui64
#define Q_atof V_atof
#define Q_stristr V_stristr
#define Q_strnistr V_strnistr
#define Q_strnchr V_strnchr
#define Q_normalizeFloatString V_normalizeFloatString
#define Q_strncpy V_strncpy
#define Q_snprintf V_snprintf
#define Q_wcsncpy V_wcsncpy
#define Q_strncat V_strncat
#define Q_strnlwr V_strnlwr
#define Q_vsnprintf V_vsnprintf
#define Q_vsnprintfRet V_vsnprintfRet
#define Q_pretifymem V_pretifymem
#define Q_pretifynum V_pretifynum
#define Q_UTF8ToUnicode V_UTF8ToUnicode
#define Q_UnicodeToUTF8 V_UnicodeToUTF8
#define Q_hextobinary V_hextobinary
#define Q_binarytohex V_binarytohex
#define Q_FileBase V_FileBase
#define Q_StripTrailingSlash V_StripTrailingSlash
#define Q_StripExtension V_StripExtension
#define Q_DefaultExtension V_DefaultExtension
#define Q_SetExtension V_SetExtension
#define Q_StripFilename V_StripFilename
#define Q_StripLastDir V_StripLastDir
#define Q_UnqualifiedFileName V_UnqualifiedFileName
#define Q_ComposeFileName V_ComposeFileName
#define Q_ExtractFilePath V_ExtractFilePath
#define Q_ExtractFileExtension V_ExtractFileExtension
#define Q_GetFileExtension V_GetFileExtension
#define Q_RemoveDotSlashes V_RemoveDotSlashes
#define Q_MakeAbsolutePath V_MakeAbsolutePath
#define Q_AppendSlash V_AppendSlash
#define Q_IsAbsolutePath V_IsAbsolutePath
#define Q_StrSubst V_StrSubst
#define Q_SplitString V_SplitString
#define Q_SplitString2 V_SplitString2
#define Q_StrSlice V_StrSlice
#define Q_StrLeft V_StrLeft
#define Q_StrRight V_StrRight
#define Q_FixSlashes V_FixSlashes
#define Q_strtowcs V_strtowcs
#define Q_wcstostr V_wcstostr
#define Q_strcat V_strcat
#define Q_GenerateUniqueNameIndex V_GenerateUniqueNameIndex
#define Q_GenerateUniqueName V_GenerateUniqueName
#define Q_MakeRelativePath V_MakeRelativePath
#define Q_qsort_s V_qsort_s
#endif // !defined( VSTDLIB_DLL_EXPORT )
#ifdef POSIX
#define FMT_WS L"%ls"
#else
#define FMT_WS L"%s"
#endif
// Strip white space at the beginning and end of a string
int V_StrTrim( char *pStr );
#endif // TIER1_STRTOOLS_H